Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6278675
Reference Type
Journal Article
Title
Decoupling microporosity and nitrogen content to optimize CO2 adsorption in melamine–resorcinol–formaldehyde xerogels
Author(s)
Flannigan, JM; Fletcher, AJ; Murdoch, B; Principe, IA
Year
2018
Journal
MATERIALS TODAY CHEMISTRY
ISSN:
2468-5194
Publisher
Elsevier
Location
OXFORD
Volume
10
Language
English
DOI
10.1016/j.mtchem.2018.09.006
Web of Science Id
WOS:000451276400015
URL
http://www.sciencedirect.com/science/article/pii/S2468519418300120
Exit
Abstract
Selected melamine–resorcinol–formaldehyde (MRF) xerogels have been synthesized and analyzed to determine the influence of nitrogen (N) incorporated into the gel structure and resorcinol-to-catalyst (sodium carbonate) and resorcinol-to-formaldehyde molar ratios. The aforementioned factors were varied, and their effect on gel properties was characterized, allowing for a better understanding of how gel characteristics can be tailored and their impact on gel performance. MRF gels, produced in this study, were characterized using volumetric and gravimetric analyses to determine porous structure and quantify CO2 capture capacities and kinetics, allowing determination of heats of adsorption and activation energies for CO2. MRF10_200_0.25 has exhibited the largest CO2 capacity (1.8 mmol/g at 0 °C) of the sample tested. Thermal stability was tested by proximate analysis, and MRF xerogels exhibited high thermal stability; however, it was found that volatile matter increases as [M] increases, particularly for [M] 20%w/w and higher. Working capacity was determined from a series of cycling studies, and capacities of 0.55, 0.58, and 0.56 mmol/g at 60 °C were observed for [M] of 10, 20, and 30%w/w, respectively. The measured heat of adsorption showed that incorporation of nitrogen functionalities results in a low energy penalty, demonstrating that the adsorption mechanism is still driven by physical forces. The results obtained indicate that the family of materials studied here offer potential routes for carbon capture materials, through a combination of micropore structure development and incorporation of favorable Lewis acid–base interactions.
Keywords
FTIR; Surface area; Gelation; Boehm titration; Gravimetry
Series
MATERIALS TODAY CHEMISTRY
Tags
PPRTV
•
Resorcinol
Lit Search Dec 2024
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity