Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6289932
Reference Type
Journal Article
Title
High-temperature oxidation of CO and CH4
Author(s)
Dryer, FL; Glassman, I
Year
1973
Is Peer Reviewed?
0
Journal
Symposium (International) on Combustion
ISSN:
0082-0784
Publisher
Elsevier
Volume
14
Issue
1
Page Numbers
987-1003
DOI
10.1016/S0082-0784(73)80090-6
URL
http://www.sciencedirect.com/science/article/pii/S0082078473800906
Exit
Abstract
The oxidation of moist carbon monoxide and the post-induction-phase oxidation of methane were studied in a turbulent flow reactor. Reactants, stable intermediates, and products were determined spatially by chemical sampling and gas-chromatographic analysis. The carbon monoxide-oxygen reaction in the presence of water was studied at atmosphericpressure, and over the following ranges: temperature, 1030°–1230°K; equivalence ratio, 0.04–0.5; and water concentration, 0.1%–3.0%. The over-all rate expression found was −d[CO]/dt=1014.6±0.25 exp[(−40,000±1200)/RT][CO]1.0[H2O]0.5[O2]0.25 mole cm−3 sec−1. The data support the fact that hydroxyl radical concentration in the reaction exceeds that at thermal equilibrium by as much as 2 orders of magnitude. The post-induction-phase reaction of methane and oxygen was studied at atmospheric pressure, over the temperature range of 1100°–1400°K and equivalence ratio range of 0.05–0.5. The over-all methane disappearance-rate expression was found to be −d[CH4]/dt=1013.2±0.20 exp[(−48,400±1200)/RT][CH4]0.7[O2]0.8, mole cm−3 sec−1. The rate was shown to be independent of water concentrations added initially or produced in the reaction. The over-all appearance rate of carbon dioxide in the methane-oxygen reaction is described byd[CO2]/dt=1014.75±0.40 exp[(−43,000±2200)/RT][CO]1.0[H2O]0.5[O2]0.25 mole cm−3 sec−1. This correlation represents rates of carbon dioxide formation 3.5 times slower than those found in the independent study of the moist carbon monoxide reaction. From these and other experiments it was possible to deduce thatCH4+OH→CH3+H2O (3) is not the only mechanism contributing to the observed rate of disappearance of methane. It was concluded that the reaction CH4+O→CH3+OH (4) is of major importance in both oxygen-and fuel-rich systems at high temperatures. Furthermore, the experimental data support that these two reactions, as well as CH3+H2→CH4+H (−5) contribute to the methane results reported here.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity