Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6315201
Reference Type
Journal Article
Title
Estrogen receptor beta activates the human retinoic acid receptor alpha-1 promoter in response to tamoxifen and other estrogen receptor antagonists, but not in response to estrogen
Author(s)
Zou, A; Marschke, KB; Arnold, KE; Berger, EM; Fitzgerald, P; Mais, DE; Allegretto, EA
Year
1999
Is Peer Reviewed?
1
Journal
Molecular Endocrinology
ISSN:
0888-8809
Volume
13
Issue
3
Page Numbers
418-430
Language
English
PMID
10076999
DOI
10.1210/mend.13.3.0253
Web of Science Id
WOS:000078929400007
Abstract
Human estrogen receptor-alpha (hERalpha) or -beta (hERbeta) transfected into Hep G2 or COS1 cells each responded to estrogen to increase transcription from an estrogen-responsive element (ERE)-driven reporter vector with similar fold induction through a classical mechanism involving direct receptor binding to DNA. ER antagonists inhibited this estrogen induction through both hERalpha and hERbeta, although raloxifene was more potent through ERalpha than ERbeta, and tamoxifen was more potent via ERbeta than ERalpha. We have shown previously that estrogen stimulated the human retinoic acid receptor-alpha-1 (hRARalpha-1) promoter through nonclassical EREs by a mechanism that was ERalpha dependent, but that did not involve direct receptor binding to DNA. We show here that in contrast to hERalpha, hERbeta did not induce reporter activity driven by the hRARalpha-1 promoter in the presence of estrogen. While hERbeta did not confer estrogen responsiveness on this promoter, it did elicit transcriptional activation in the presence of 4-hydroxytamoxifen (4-OH-Tam). Additionally, this 4-OH-Tam agonist activity via ERbeta was completely blocked by estrogen. Like ERalpha, transcriptional activation of this promoter by ERbeta was not mediated by direct receptor binding to DNA. While hERalpha was shown to act through two estrogen-responsive sequences within the promoter, hERbeta acted only at the 3'-region, through two Sp1 sites, in response to 4-OH-Tam. Other ER antagonists including raloxifene, ICI-164,384 and ICI-182,780 also acted as agonists through ERbeta via the hRARalpha-1 promoter. Through the use of mutant and chimeric receptors, it was shown that the 4-OH-Tam activity via ERbeta from the hRARalpha-1 promoter in Hep G2 cells required the amino-terminal region of ERbeta, a region that was not necessary for estrogen-induced ERbeta activity from an ERE in Hep G2 cells. Additionally, the progesterone receptor (PR) antagonist RU486 acted as a weak (IC50 >1 microM) antagonist via hERalpha and as a fairly potent (IC50 approximately 200 nM) antagonist via hERbeta from an ERE-driven reporter in cells that do not express PR. Although RU486 bound only weakly to ERalpha or ERbeta in vitro, it did bind to ERbeta in whole-cell binding assays, and therefore, it is likely metabolized to an ERbeta-interacting compound in the cell. Interestingly, RU486 acted as an agonist through ERbeta to stimulate the hRARalpha-1 promoter in Hep G2 cells. These findings may have ramifications in breast cancer treatment regimens utilizing tamoxifen or other ER antagonists and may explain some of the known estrogenic or antiestrogenic biological actions of RU486.
Tags
PFAS
•
Additional PFAS (formerly XAgency)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity