Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6319847
Reference Type
Journal Article
Title
Elevated insulin-like growth factor 1 receptor signaling induces antiestrogen resistance through the MAPK/ERK and PI3K/Akt signaling routes
Author(s)
Zhang, Y; Moerkens, M; Ramaiahgari, S; de Bont, H; Price, L; Meerman, J; van de Water, B
Year
2011
Is Peer Reviewed?
1
Journal
Breast Cancer Research
ISSN:
1465-5411
EISSN:
1465-542X
Volume
13
Issue
3
Page Numbers
R52
Language
English
PMID
21595894
DOI
10.1186/bcr2883
Web of Science Id
WOS:000295797100004
Abstract
INTRODUCTION:
Insulin-like growth factor 1 (IGF-1) receptor (IGF-1R) is phosphorylated in all breast cancer subtypes. Past findings have shown that IGF-1R mediates antiestrogen resistance through cross-talk with estrogen receptor (ER) signaling and via its action upstream of the epidermal growth factor receptor and human epidermal growth factor receptor 2. Yet, the direct role of IGF-1R signaling itself in antiestrogen resistance remains obscure. In the present study, we sought to elucidate whether antiestrogen resistance is induced directly by IGF-1R signaling in response to its ligand IGF-1 stimulation.
METHODS:
A breast cancer cell line ectopically expressing human wild-type IGF-1R, MCF7/IGF-1R, was established by retroviral transduction and colony selection. Cellular antiestrogen sensitivity was evaluated under estrogen-depleted two-dimensional (2D) and 3D culture conditions. Functional activities of the key IGF-1R signaling components in antiestrogen resistance were assessed by specific kinase inhibitor compounds and small interfering RNA.
RESULTS:
Ectopic expression of IGF-1R in ER-positive MCF7 human breast cancer cells enhanced IGF-1R tyrosine kinase signaling in response to IGF-1 ligand stimulation. The elevated IGF-1R signaling rendered MCF7/IGF-1R cells highly resistant to the antiestrogens tamoxifen and fulvestrant. This antiestrogen-resistant phenotype involved mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol 3-kinase/protein kinase B pathways downstream of the IGF-1R signaling hub and was independent of ER signaling. Intriguingly, a MAPK/ERK-dependent agonistic behavior of tamoxifen at low doses was triggered in the presence of IGF-1, showing a mild promitogenic effect and increasing ER transcriptional activity.
CONCLUSIONS:
Our data provide evidence that the IGF-1/IGF-1R signaling axis may play a causal role in antiestrogen resistance of breast cancer cells, despite continuous suppression of ER transcriptional function by antiestrogens.
Tags
PFAS
•
Additional PFAS (formerly XAgency)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity