Health & Environmental Research Online (HERO)


Print Feedback Export to File
6321071 
Journal Article 
Mitochondria-Targeted Artificial "Nano-RBCs" for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation 
Zhang, L; Wang, D; Yang, K; Sheng, D; Tan, B; Wang, Z; Ran, H; Yi, H; Zhong, Y; Lin, H; Chen, Y 
2018 
Advanced Science
ISSN: 2198-3844 
1800049 
English 
Phototherapy has emerged as a novel therapeutic modality for cancer treatment, but its low therapeutic efficacy severely hinders further extensive clinical translation and application. This study reports amplifying the phototherapeutic efficacy by constructing a near-infrared (NIR)-responsive multifunctional nanoplatform for synergistic cancer phototherapy by a single NIR irradiation, which can concurrently achieve mitochondria-targeting phototherapy, synergistic photothermal therapy (PTT)/photodynamic therapy (PDT), self-sufficient oxygen-augmented PDT, and multiple-imaging guidance/monitoring. Perfluorooctyl bromide based nanoliposomes are constructed for oxygen delivery into tumors, performing the functions of red blood cells (RBCs) for oxygen delivery ("Nano-RBC" nanosystem), which can alleviate the tumor hypoxia and enhance the PDT efficacy. The mitochondria-targeting performance for enhanced and synergistic PDT/PTT is demonstrated as assisted by nanoliposomes. In particular, these "Nano-RBCs" can also act as the contrast agents for concurrent computed tomography, photoacoustic, and fluorescence multiple imaging, providing the potential imaging capability for phototherapeutic guidance and monitoring. This provides a novel strategy to achieve high therapeutic efficacy of phototherapy by the rational design of multifunctional nanoplatforms with the unique performances of mitochondria targeting, synergistic PDT/PTT by a single NIR irradiation (808 nm), self-sufficient oxygen-augmented PDT, and multiple-imaging guidance/monitoring.