Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6322110
Reference Type
Journal Article
Title
Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors
Author(s)
Patel, HK; Tao, N; Lee, KM; Huerta, M; Arlt, H; Mullarkey, T; Troy, S; Arteaga, CL; Bihani, T
Year
2019
Is Peer Reviewed?
1
Journal
Breast Cancer Research
ISSN:
1465-5411
EISSN:
1465-542X
Volume
21
Issue
1
Page Numbers
146
Language
English
PMID
31852484
DOI
10.1186/s13058-019-1230-0
Web of Science Id
WOS:000510618100002
Abstract
BACKGROUND:
Addition of CDK4/6 inhibitors (CDK4/6i) to endocrine therapy significantly increased progression-free survival, leading to their approval and incorporation into the metastatic breast cancer treatment paradigm. With these inhibitors being routinely used for patients with advanced estrogen receptor-positive (ER+) breast cancer, resistance to these agents and its impact on subsequent therapy needs to be understood. Considering the central role of ER in driving the growth of ER+ breast cancers, and thus endocrine agents being a mainstay in the treatment paradigm, the effects of prior CDK4/6i exposure on ER signaling and the relevance of ER-targeted therapy are important to investigate. The objective of this study was to evaluate the anti-tumor activity of elacestrant, a novel oral selective estrogen receptor degrader (SERD), in preclinical models of CDK4/6i resistance.
METHODS:
Elacestrant was evaluated as a single agent, and in combination with alpelisib or everolimus, in multiple in vitro models and patient-derived xenografts that represent acquired and "de novo" CDK4/6i resistance.
RESULTS:
Elacestrant demonstrated growth inhibition in cells resistant to all three approved CDK4/6i (palbociclib, abemaciclib, ribociclib) in both ESR1 wild-type and mutant backgrounds. Furthermore, we demonstrated that elacestrant, as a single agent and in combination, inhibited growth of patient-derived xenografts that have been derived from a patient previously treated with a CDK4/6i or exhibit de novo resistance to CDK4/6i. While the resistant lines demonstrate distinct alterations in cell cycle modulators, this did not affect elacestrant's anti-tumor activity. In fact, we observe that elacestrant downregulates several key cell cycle players and halts cell cycle progression in vitro and in vivo.
CONCLUSIONS:
We demonstrate that breast cancer tumor cells continue to rely on ER signaling to drive tumor growth despite exposure to CDK4/6i inhibitors. Importantly, elacestrant can inhibit this ER-dependent growth despite previously reported mechanisms of CDK4/6i resistance observed such as Rb loss, CDK6 overexpression, upregulated cyclinE1 and E2F1, among others. These data provide a scientific rationale for the evaluation of elacestrant in a post-CDK4/6i patient population. Additionally, elacestrant may also serve as an endocrine backbone for rational combinations to combat resistance.
Tags
PFAS
•
Additional PFAS (formerly XAgency)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity