Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6332197
Reference Type
Journal Article
Title
Differential stimulation and suppression of phytoplankton growth by ammonium enrichment in eutrophic hardwater lakes over 16 years
Author(s)
Swarbrick, VJ; Simpson, GL; Glibert, PM; Leavitt, PR
Year
2019
Is Peer Reviewed?
1
Journal
Limnology and Oceanography
ISSN:
0024-3590
EISSN:
1939-5590
Volume
64
Page Numbers
S130-S149
PMID
458543320700045616410
DOI
10.1002/lno.11093
Web of Science Id
WOS:000456164100012
Abstract
Previous research suggests that fertilization of surface waters with chemically reduced nitrogen (N), including ammonium (NH4+), may either enhance or suppress phytoplankton growth. To identify the factors influencing the net effect of NH4+, we fertilized natural phytoplankton assemblages from two eutrophic hardwater lakes with growth-saturating concentrations of NH4Cl in 241 incubation experiments conducted biweekly May-August during 1996-2011. Phytoplankton biomass (as chlorophyll a) was significantly (p < 0.05) altered in fertilized trials relative to controls after 72 h in 44.8% of experiments, with a marked rise in both spring suppression and summer stimulation of assemblages over 16 yr, as revealed by generalized additive models (GAMs). Binomial GAMs were used to compare contemporaneous changes in physico-chemical (temperature, Secchi depth, pH, nutrients; 19.5% deviance explained) and biological parameters (phytoplankton community composition; 40.0% deviance explained) to results from fertilization experiments. Models revealed that that the likelihood of growth suppression by NH4+ increased with abundance of diatoms, cryptophytes, and unicellular cyanobacteria, particularly when water temperatures and soluble reactive phosphorus (SRP) concentrations were low. In contrast, phytoplankton was often stimulated by NH4+ when chlorophytes and non-N-2-fixing cyanobacteria were abundant, and temperatures and SRP concentrations were high. Progressive intensification of NH4+ effects over 16 yr reflects changes in both spring (cooler water, increased diatoms and cryptophytes) and summer lake conditions (more chlorophytes, earlier cyanobacteria blooms), suggesting that the seasonal effects of NH4+ will vary with future climate change and modes of N enrichment.
Tags
IRIS
•
Nitrate/Nitrite
Literature Search Update, 1/1/2018 – 8/17/2022
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity