Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6332516
Reference Type
Journal Article
Title
Sonochemical synthesis of Fe3O4/carbon nanotubes using low frequency ultrasonic devices and their performance for heterogeneous sono-persulfate process on inactivation of Microcystis aeruginosa
Author(s)
Wu, X; Xu, G; Zhu, JJ
Year
2019
Is Peer Reviewed?
1
Journal
Ultrasonics Sonochemistry
ISSN:
1350-4177
EISSN:
1873-2828
Volume
58
Page Numbers
104634
Language
English
PMID
31450346
DOI
10.1016/j.ultsonch.2019.104634
Web of Science Id
WOS:000489355000087
Abstract
Iron oxide nanoparticles decorated on multi-wall nanotube (MWCNTs) were successfully fabricated through a facile and rapid sonochemical method without any pre-treatment on MWCNTs. Fe3O4/MWCNTs-20 showed a uniform and fine distribution of nanoparticles in the MWCNTs. The obtained Fe3O4/MWCNTs were analysed using TEM and XPS. Notably, Fe3O4/MWCNTs were used for persulfate activation on cyanobacterial cell removal. With 20 mg/L persulfate, Fe3O4/MWCNTs showed an efficient catalytic performance after 1 h treatment. In the Fe3O4/MWCNTs hybrid catalyst, Fe3O4 helps to produce sulfate radicals and hydroxyl radicals whereas the size of the Fe3O4 clusters could affect the electron transfer for radical generation. Moreover, using high frequency low intensity ultrasound, the combination of persulfate and Fe3O4/MWCNTs-20 reduced the remaining cell number to 9.4% within 30 min treatment. In conclusion, our work demonstrated that low frequency ultrasonic devices are capable of fabricating Fe3O4/MWCNTs via a simple and time-saving route, and the obtained catalysts showed superior catalytic performance on persulfate for harmful cyanobacteria control.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity