Health & Environmental Research Online (HERO)


Print Feedback Export to File
6339240 
Journal Article 
Croissance bacterienne sur charbon actif granule. Investigation au microscope electronique a balayage 
Lafrance, P; Mazet, M; Villessot, D 
1983 
Water Research
ISSN: 0043-1354
EISSN: 1879-2448 
17 
10 
1467-1470 
Résumé La caractérisation physique du développement bactérien à l'intérieur des colonnes de filtration à charbon actif granulé (CAG) est recherchée à l'aide d'observations en microscopie électronique à balayage. L'examen microscopique d'échantillons de charbon actif, utilisé pour le traitement d'une eau potable artificiellement contaminée en détergent, a montré la nature des sites de fixation de la matière organique et d'initiation de la croissance bactérienne. Bien que l'observation de l'évolution des systèmes microbiologiques fixés demeure limitée en raison de la saturation physique progressive du charbon, il semble que la maturation biologique du CAG modifie considérablement les relations physiques entre les microorganismes et la surface du charbon actif. Les supports de biodégradation ne pourraient alors plus être identifiés aux sites de concentration des substrats par adsorption, limitant ainsi l'impact de l'adsorption physicochimique sur la bioactivité de dégradation de la matière organique contenue dans les aux naturelles. Recent work characterising biological development in granular activated carbon filters (GAC) has contributed to a better understanding of the role of bacterial growth in the efficiency of adsorption processes in water treatment. Among the techniques involved in biological GAC studies, scanning electron microscopy (SEM) can be used to describe the physical relations between bacterial populations and activated carbon surface. In this study, an effective technique is presented for two-phased fixation (2% paraformaldehyde-2.5% glutaraldehyde and 1% osmium tetroxyde), dehydration and critical point drying of “biological” activated carbon particles. Microscopic examination of GAC after 5 days of filtration (drinking water artificially contaminated with 1,0 mg l-1 of an anionic surfactant) showed the nature of the fixation sites of organic matter and the initially scattered bacterial growth sites. The microbiological colonization appears then along surface crevices and holes (Fig. 1) where substrate concentration occurs and where organisms are shielded from fluid shear forces. Bacteria attach to the carbon surface by secreting a network-like polysaccharide matrix (Fig. 2). After 15 days of filtration (Fig. 3), biological maturation of the carbon induces the progressive formation of a membranous organic film (surfactant precipitation and bioflocculation) making it difficult to observe bacterial development on the carbon surface (Fig. 4). However, there is no evidence that a continuous biofilm (uniform layer of bacteria in a slimy shell) develops around the carbon granules. The observations support the assumption that structural relationships between microorganisms and carbon surface are modified considerably during the accumulation of organic floc and cellular debris. This organic support medium enhances the biodegradation of substrates that would obtained from the carbon surface alone. Therefore, it appears that the effective metabolization of organic adsorbates in GAC filtration units is only slightly connected with the efficiency of physico-chemical adsorption processes. 
charbon activé; microscopie électronique à balayage; adsorption; filtration; eau potable; croissance bactérienne; biodégradation; étude-pilote; activated carbon; scanning electron microscopy; drinking water; bacterial growth; biodegradation; pilot study