Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6595898
Reference Type
Journal Article
Title
Preparation of whey protein hydrolysates using a single- and two-stage enzymatic membrane reactor and their immunological and antioxidant properties: characterization by multivariate data analysis
Author(s)
Cheison, SC; Wang, Z; Xu, SY; ,
Year
2007
Is Peer Reviewed?
Yes
Journal
Journal of Agricultural and Food Chemistry
ISSN:
0021-8561
EISSN:
1520-5118
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
Page Numbers
3896-3904
Language
English
PMID
17432869
DOI
10.1021/jf062936i
Web of Science Id
WOS:000246313200023
Abstract
An initial 5% (w/v), followed thereafter with replacement aliquots of 3% (w/v), whey protein isolate (WPI) (ca. 86.98% Kjeldahl N x 6.38), was hydrolyzed using Protease N Amano G (IUB 3.4.24.28, Bacillus subtilis) in an enzymatic membrane reactor (EMR) fitted with either a 10 or 3 kDa nominal molecular weight cutoff (NMWCO) tangential flow filter (TFF) membrane. The hydrolysates were desalted by adsorption onto a styrene-based macroporous adsorption resin (MAR) and washed with deionized water to remove the alkali, and the peptides were desorbed with 25, 50, and 95% (v/v) ethyl alcohol. The desalted hydrolysates were analyzed for antibody binding, free radical scavenging, and molecular mass analysis as well as total and free amino acids (FAA). For the first time a quantity called IC50, the concentration of peptides causing 50% inhibition of the available antibody, is introduced to quantify inhibition enzyme-linked immunosorbent assay (ELISA) properties. Principal component analysis (PCA) was used for data reduction. The hydrolysate molecular mass provided the most prominent influence (PC1 = 57.35%), followed by inhibition ELISA (PC2 = 18.90%) and the antioxidant properties (PC3 = 10.43%). Ash was significantly reduced in the desalted fractions; the protein adsorption recoveries were high, whereas desorption with alcohol was prominently influenced by the hydrophobic/ hydrophilic amino acid balance. After hydrolysis, some hydrolysates showed increased ELISA reactivity compared with the native WPI.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity