Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6612539
Reference Type
Journal Article
Title
Catalytic chain transfer for molecular weight control in the emulsion polymerization of methyl methacrylate and methyl methacrylate-styrene
Author(s)
Suddaby, KG; Haddleton, DM; Hastings, JJ; Richards, SN; Odonnell, JP; ,
Year
1996
Is Peer Reviewed?
1
Journal
Macromolecules
ISSN:
0024-9297
EISSN:
1520-5835
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
Volume
29
Issue
25
Page Numbers
8083-8091
Language
English
DOI
10.1021/ma960528h
Web of Science Id
WOS:A1996VW49100010
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0030566485&doi=10.1021%2fma960528h&partnerID=40&md5=a7b1983bde6da7508d89929445ba4562
Exit
Abstract
The application of catalytic chain transfer in the emulsion homopolymerization of methyl methacrylate and copolymerization of methyl methacrylate and styrene has been examined. [Bis[mu-[(2,3-butanedione dioximato)(2-)-O:O']] tetrafluorodiborato(2-)-N,N',N '',N''']cobalt (COBF, 1) has been used as a low-spin cobalt(II) catalytic chain transfer agent. The number-average molecular weight of poly(methyl methacrylate) is decreased from over 120 000 in the absence of catalytic chain transfer agent to less than 3000 on addition of 36 ppm of 1 remaining constant throughout the reaction while the polydispersity index was maintained at approximately equal to 2. The mechanism is essentially the same as in solution or bulk with very small amounts of primary radical initiation, undetectable by matrix-assisted laser desorption ionization time of flight mass spectrometry, and vinyl unsaturation at the terminal end of each polymer molecule. Copolymerization of methyl methacrylate with styrene has also been demonstrated. Catalytic chain transfer polymerization has been shown to be an extremely effective method of controlling molecular weight under emulsion conditions. The effects of catalytic chain transfer agent level, feed conditions, and styrene level are presented. The behavior of catalytic chain transfer in emulsion proves to be more complicated than in solution, due to partitioning of the catalytic chain transfer agent in the compartmentalized system. COBF partitions almost equally between the organic and aqueous phases. The feed profile of each reaction ingredient is important, with the best results being obtained when catalyst is fed continually as a solution in the monomer feed. A critical level of catalyst is apparent which is shown to be related to the number of catalyst molecules per particle.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity