Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6666974
Reference Type
Journal Article
Title
Photoinitiated, inverse emulsion polymerization of acrylamide: Some mechanistic and kinetic aspects
Author(s)
Liu, LY; Yang, WT; ,
Year
2004
Is Peer Reviewed?
Yes
Journal
Journal of Polymer Science. Part A, Polymer Chemistry
ISSN:
0887-624X
EISSN:
1099-0518
Publisher
WILEY
Location
HOBOKEN
Page Numbers
846-852
DOI
10.1002/pola.11033
Web of Science Id
WOS:000188591600004
Abstract
The kinetics of photoinitiated, inverse emulsion polymerization of acrylamide with 2,2-dimethoxy-2-phenylacetophenone (DMPA) as a photoinitiator was investigated under three different cases. First, in a quartz reactor transparent to full UV light, the polymerization rate (RP) increased and then decreased with the change of initiator order from 0.27 to a negative value when the DMPA concentration was increased, and it was particularly unusual that monomer orders at different DMPA concentrations were lower than the first. Second, for polymerization without DMPA in a quartz reactor, the dependence of R-P on monomer concentration was similar to that of R-P on initiator concentration in the aforementioned case. Third, when polymerization was carried out in a Pyrex reactor where the far UV light was filtered, a peak rate was also observed, and initiator orders varied from 0.24 to a negative value; however, under this case monomer orders at different initiator concentrations were greater than the first. These results indicated that the effect of absorbance often observed in bulk or solution photopolymerization also existed in this system, and the self-initiation of monomer had some influence on polymerization, and the role of primary radical termination could not be neglected, as evidenced by kinetic analysis. (C) 2004 Wiley Periodicals, Inc.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity