Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6712750
Reference Type
Journal Article
Title
Altered hippocampal expression of glutamate receptors and transporters in GRM2 and GRM3 knockout mice
Author(s)
Lyon, L; Kew, JN; Corti, C; Harrison, PJ; Burnet, PW
Year
2008
Is Peer Reviewed?
1
Journal
Synapse
ISSN:
0887-4476
EISSN:
1098-2396
Volume
62
Issue
11
Page Numbers
842-850
Language
English
PMID
18720515
DOI
10.1002/syn.20553
Web of Science Id
WOS:000259658000006
Abstract
Group II metabotropic glutamate receptors (mGluR2 and mGluR3, also called mGlu2 and mGlu3, encoded by GRM2 and GRM3, respectively) are therapeutic targets for several psychiatric disorders. GRM3 may also be a schizophrenia susceptibility gene. mGluR2-/- and mGluR3-/- mice provide the only unequivocal means to differentiate between these receptors, yet interpretation of in vivo findings may be complicated by secondary effects on expression of other genes. To address this issue, we examined the expression of NMDA receptor subunits (NR1, NR2A, NR2B) and glutamate transporters (EAAT1-3), as well as the remaining group II mGluR, in the hippocampus of mGluR2-/- and mGluR3-/- mice, compared with wild-type controls. mGluR2 mRNA was increased in mGluR3-/- mice, and vice versa. NR2A mRNA was increased in both knockout mice. EAAT1 (GLAST) mRNA and protein, and EAAT2 (GLT-1) protein, were reduced in mGluR3-/- mice, whereas EAAT3 (EAAC1) mRNA was decreased in mGluR2-/- mice. Transcripts for NR1 and NR2B were unchanged. The findings show a compensatory upregulation of the remaining group II metabotropic glutamate receptor in the knockout mice. Upregulation of NR2A expression suggests modified NMDA receptor signaling in mGluR2-/- and mGluR3-/- mice, and downregulation of glutamate transporter expression suggests a response to altered synaptic glutamate levels. The results show a mutual interplay between mGluR2 and mGluR3, and also provide a context in which to interpret behavioral and electrophysiological results in these mice.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity