Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6725412
Reference Type
Journal Article
Title
Epigenetic mechanisms of amyloid-β production in anisomycin-treated SH-SY5Y cells
Author(s)
Guo, X; Wu, X; Ren, L; Liu, G; Li, L
Year
2011
Is Peer Reviewed?
1
Journal
Neuroscience
ISSN:
0306-4522
EISSN:
1873-7544
Volume
194
Page Numbers
272-281
Language
English
PMID
21843603
DOI
10.1016/j.neuroscience.2011.07.012
Web of Science Id
WOS:000295571900027
Abstract
Oxidative stress and inflammation as the pathological components of Alzheimer's disease (AD) have been well understood. Among a diversity of mitogen-activated protein kinase (MAPK) family members, JNK and p38 MAPK subfamilies are relevant to the response of environmental stress, inflammatory stimuli, or other insults. Recent studies have demonstrated that epigenetic mechanisms may play a pivotal role in AD pathogenesis and development. In the present study, we have investigated epigenetic mechanisms such as DNA methylation and histone acetylation involved in the activation of stress-related signaling pathways for amyloid-β (Aβ) production. Human neuroblastoma SH-SY5Y cells were treated by anisomycin, an activator of stress-related MAPKs (JNK and p38 MAPK). A significant increase of intracellular Aβ level in anisomycin-treated SH-SY5Y cells was observed. The expression of amyloid-β precursor protein (APP), β-site APP-cleaving enzyme 1 (BACE1), and presenilin 1 (PS1) was upregulated by demethylation in three gene promoters associated with the reduction of methyltransferases (DNMTs). Meanwhile, an enhanced level of global histone H3 acetylation accompanied with upregulation of histone acetyltransferases p300/CREB-binding protein (CBP) and downregulation of histone deacetylases (HDACs) was also observed. These findings indicated that the activation of stress-related signaling pathways could result in the increased transcription of APP, BACE1, and PS1 genes through DNMT-dependent hypomethylation and histone H3 hyperacetylation, thus leading to Aβ overproduction. Moreover, our findings provided a novel insight into epigenetic mechanisms by which oxidative stress contributes to the pathogenesis of AD.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity