Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6774068
Reference Type
Journal Article
Title
Improving the foundation for particulate matter risk assessment by individual nanoparticle statistics from electron microscopy analysis
Author(s)
Brostrom, A; Kling, KI; Koponen, IK; Hougaard, KS; Kandler, K; Molhave, K; ,
Year
2019
Is Peer Reviewed?
1
Journal
Scientific Reports
EISSN:
2045-2322
Publisher
NATURE PUBLISHING GROUP
Location
LONDON
PMID
31147577
DOI
10.1038/s41598-019-44495-7
Web of Science Id
WOS:000469418100039
Abstract
Air pollution is one of the major contributors to the global burden of disease, with particulate matter (PM) as one of its central concerns. Thus, there is a great need for exposure and risk assessments associated with PM pollution. However, current standard measurement techniques bring no knowledge of particle composition or shape, which have been identified among the crucial parameters for toxicology of inhaled particles. We present a method for collecting aerosols via impaction directly onto Transmission Electron Microscopy (TEM) grids, and based on the measured impactor collection efficiency and observed impact patterns we establish a reproducible imaging routine for automated Scanning Electron Microscopy (SEM) analysis. The method is validated by comparison to scanning mobility particle sizer (SMPS) measurements, where a good agreement is found between the particle size distributions (PSD), ensuring a representative description of the sampled aerosol. We furthermore determine sampling conditions for achieving optimal particle coverage on the TEM grids, allowing for a statistical analysis. In summary, the presented method can provide not only a representative PSD, but also detailed statistics on individual particle geometries. If coupled with Energy-dispersive X-ray spectroscopy (EDS) analysis elemental compositions can be assessed as well. This makes it possible to categorize particles both according to size and shape e.g. round and fibres, or agglomerates, as well as classify them based on their elemental composition e.g. salt, soot, or metals. Combined this method brings crucial knowledge for improving the foundation for PM risk assessments on workplaces and in ambient conditions with complex aerosol pollution.
Tags
OPPT REs
•
OPPT_Asbestos, Part I: Chrysotile_Supplemental Search
LitSearch: Sept 2020 (Undated)
WoS
Legacy Uses
Health Outcomes
Exposure
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity