Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6775798
Reference Type
Journal Article
Title
The NADPH Oxidase Family and Its Inhibitors
Author(s)
Chocry, M; Leloup, L
Year
2020
Is Peer Reviewed?
Yes
Journal
Antioxidants & Redox Signaling
ISSN:
1523-0864
EISSN:
1557-7716
Volume
33
Issue
5
Page Numbers
332-353
Language
English
PMID
31826639
DOI
10.1089/ars.2019.7915
Web of Science Id
WOS:000509222500001
Abstract
Significance:
The oxidative stress, resulting from an imbalance in the production and scavenging of reactive oxygen species (ROS), is known to be involved in the development and progression of several pathologies. The excess of ROS production is often due to an overactivation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) and for this reason these enzymes became promising therapeutic targets. However, even if NOX are now well characterized, the development of new therapies is limited by the lack of highly isoform-specific inhibitors.
Recent Advances:
In the past decade, several groups and laboratories have screened thousands of molecules to identify new specific inhibitors with low off-target effects. These works have led to the characterization of several new potent NOX inhibitors; however, their specificity varies a lot depending on the molecules.
Critical Issues:
Here, we are reviewing more than 25 known NOX inhibitors, focusing mainly on the newly identified ones such as APX-115, NOS31, Phox-I1 and 2, GLX7013114, and GSK2795039. To have a better overall view of these molecules, the inhibitors were classified according to their specificity, from pan-NOX inhibitors to highly isoform-specific ones. We are also presenting the use of these compounds both in vitro and in vivo.
Future Directions:
Several of these new molecules are potent and very specific inhibitors that could be good candidates for the development of new drugs. Even if the results are very promising, most of these compounds were only validated in vitro or in mice models and further investigations will be required before using them as potential therapies.
Tags
•
LitSearch-NOx (2024)
Keyword Search
Toxicology
Primary Search String
WoS
PubMed
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity