Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6810018
Reference Type
Journal Article
Title
Potential toxicity of sarafloxacin to catalase: spectroscopic, ITC and molecular docking descriptions
Author(s)
Cao, Z; Liu, R; Yang, B
Year
2013
Is Peer Reviewed?
1
Journal
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
ISSN:
1386-1425
EISSN:
1873-3557
Volume
115
Page Numbers
457-463
Language
English
PMID
23871971
DOI
10.1016/j.saa.2013.06.093
Web of Science Id
WOS:000324152700056
Abstract
The interaction between sarafloxacin and catalase (CAT) was studied by fluorescence spectroscopy, UV-visible absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration microcalorimetry (ITC) and molecular docking method. After deducting the inner filter effect, the fluorescence of CAT was quenched regularly by different concentrations of sarafloxacin. The quenching mechanism was studied by lifetime measurement, and it was proved to be mostly due to static quenching. The formation of sarafloxacin-CAT complex alters the micro-environment of amide moieties and tryptophan (Trp) residues, reduces the α-helix content of the enzyme, changes the peripheral substituents on the porphyrin ring of heme and leads to the inhibition of the enzyme activity. Molecular docking study reveals that sarafloxacin is located between two α-helix of CAT near to Trp 182 and Trp 185 residues, which supports the experimental results and helps to have a more clear understanding about the interaction mechanism. The change in the relative position of His 74 to heme induced by the variation of secondary structure is considered to be the major reason for the reduction of CAT activity. Moreover, sarafloxacin binds into a hydrophobic area of CAT mainly through hydrophobic interactions, which is consistent with the ITC analysis.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity