Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6863750
Reference Type
Journal Article
Title
Behaviour and design of composite beams subjected to negative bending and compression
Author(s)
Vasdravellis, G; Uy, B; Tan, EL; Kirkland, B; ,
Year
2012
Is Peer Reviewed?
Yes
Journal
Journal of Constructional Steel Research
ISSN:
0143-974X
Publisher
ELSEVIER SCI LTD
Location
OXFORD
Page Numbers
34-47
DOI
10.1016/j.jcsr.2012.07.012
Web of Science Id
WOS:000312753200004
Abstract
This paper investigates the behaviour of steel-concrete composite beams subjected to the combined effects of negative bending and axial compression. For this study, six full-scale tests were conducted on composite beams subjected to negative moment while compression was applied simultaneously. The level of the applied axial compression varied from low to high. Following the tests, a nonlinear finite element model was developed and calibrated against the experimental results. The model was found to be capable of predicting the nonlinear response and the ultimate failure modes of the tested beams. The developed finite element model was further used to carry out a series of parametric analyses on a range of composite sections commonly used in practice. It was found that, when a compressive load acts in the composite section, the negative moment capacity of a composite beam is significantly reduced and local buckling in the steel beam is more pronounced, compromising the ductility of the section. Rigid plastic analysis based on sectional equilibrium can reasonably predict the combined strength of a composite section and, thus, can be used conservatively in the design practice. Detailing with longitudinal stiffeners in the web of the steel beam in the regions of negative bending eliminate web buckling and increase the rotational capacity of the composite section. Based on the experimental outcomes and the finite element analyses a simplified design model is proposed for use in engineering practice. (C) 2012 Elsevier Ltd. All rights reserved.
Tags
OPPT REs
•
OPPT_Asbestos, Part I: Chrysotile_Supplemental Search
LitSearch: Sept 2020 (Undated)
WoS
Legacy Uses
Health Outcomes
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity