Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6870178
Reference Type
Journal Article
Title
Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient - Effect of carbonation on the pore structure
Author(s)
Gruyaert, E; Van Den Heede, P; De Belie, N; ,
Year
2013
Is Peer Reviewed?
Yes
Journal
Cement and Concrete Composites
ISSN:
0958-9465
Publisher
ELSEVIER SCI LTD
Location
OXFORD
Page Numbers
39-48
DOI
10.1016/j.cemconcomp.2012.08.024
Web of Science Id
WOS:000313532000005
Abstract
Concrete containing supplementary cementitious materials as, e.g. fly-ash (FA) or blast-furnace slag (BFS) is more vulnerable to carbonation than ordinary Portland cement concrete. In order to know whether carbonation-initiated corrosion is a risk within the life span of the concrete structure, the carbonation depth after several years (e.g. 50 years) is mostly predicted based on accelerated carbonation tests on young concrete specimens. However, these predictions do not take into account the positive effect of the continuing hydration of slag and fly-ash particles over a longer time.In this study, accelerated carbonation tests (10 vol.% of CO2) were performed on concrete specimens containing different amounts of blast-furnace slag (slag-to-binder ratios of 50%, 70% and 85%) after different curing times (1, 3, 6 or 18 months). Based on these tests, a new method, which takes into account the effect of the ongoing hydration, is described in order to predict the carbonation depth of these special types of concrete over a long time more realistically. The tests revealed that, although BFS concrete has a lower carbonation resistance than OPC concrete, the depth of carbonation at the end of the concrete's life (50 years) can still be acceptable in normal environments. (C) 2012 Elsevier Ltd. All rights reserved.
Tags
OPPT REs
•
OPPT_Asbestos, Part I: Chrysotile_Supplemental Search
LitSearch: Sept 2020 (Undated)
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity