Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6872432
Reference Type
Journal Article
Title
Optimisation of using lightweight aggregates in mitigating autogenous deformation of concrete
Author(s)
Akcay, B; Tasdemir, MAli; ,
Year
2009
Is Peer Reviewed?
Yes
Journal
Construction and Building Materials
ISSN:
0950-0618
EISSN:
1879-0526
Publisher
ELSEVIER SCI LTD
Location
OXFORD
Page Numbers
353-363
DOI
10.1016/j.conbuildmat.2007.11.015
Web of Science Id
WOS:000265086000041
Abstract
Experiments were conducted to determine the effects of using dispersed saturated lightweight aggregates (LWAs) as water reservoirs in mitigating the autogenous deformation of high performance concrete and to establish the optimum solutions as a combination of a number of factors affecting the fracture and mechanical characteristics of concrete. For this purpose, in concretes prepared with a constant low water to cement ratio, normal aggregates were replaced by natural LWAs with size fractions of 2-4 mm or 4-8 mm at three different volume fractions such as 10%, 20% and 30% of the total aggregate volume of concrete. The results indicate that the inclusion of. ne fraction of LWAs in concrete reduces the autogenous deformation significantly compared to that of the coarse fraction. It is also shown that concretes with. ne fraction of LWAs have enhanced fracture and mechanical properties compared to those with coarse fraction of LWAs. Increasing the replacement ratio of LWAs mitigates autogenous deformation, while having an unfavourable effect on fracture and mechanical properties of concrete for both size replacements. A multi-objective simultaneous optimisation technique, in which the response surface method (RSM) is incorporated, is used to optimise the mitigation ratio of autogenous deformation and fracture parameters of high strength concretes in an effort to obtain a more ductile concrete with less autogenous deformation. (C) 2007 Elsevier Ltd. All rights reserved.
Tags
OPPT REs
•
OPPT_Asbestos, Part I: Chrysotile_Supplemental Search
LitSearch: Sept 2020 (Undated)
WoS
Legacy Uses
Health Outcomes
Additional Legacy Terms
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity