Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6877764
Reference Type
Journal Article
Title
Deterministic size effect in the strength of cracked concrete structures
Author(s)
Karihaloo, BL; Abdalla, MAHM; El Naggar, QZ; ,
Year
2006
Is Peer Reviewed?
Yes
Journal
Cement and Concrete Research
ISSN:
0008-8846
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Location
OXFORD
Page Numbers
171-188
DOI
10.1016/j.cemconres.2005.04.007
Web of Science Id
WOS:000234337800017
Abstract
This paper is concerned with identifying and quantifying the deterministic (as opposed to statistical) size effect in the strength of cracked concrete structures that is believed to be a result of stress discontinuities introduced by the cracks. For this, the strength of geometrically similar pre-cracked specimens of varying sizes made from three concrete mixes is measured in three-point bend and wedge splitting geometries. The true, size-independent specific fracture energy and the corresponding tension softening diagram of each of the three mixes are independently established in order to exclude their influence on the strength size effect. The test results show that the deterministic strength size effect weakens as the size of the crack reduces. This is confirmed by theoretical/computational studies based on the fictitious crack model in the range of sizes tested in the laboratory. The theoretical/computational model has been extended beyond this limited range to include cracked concrete structures in the size range 1 : 80. The computational results have been fitted by a simple strength size effect formula with appropriate asymptotic behaviour at both size extremes. The three unknown coefficients in this formula depend only on the size of the crack and they can be obtained by conducting tests on geometrically similar specimens of any shape but of varying sizes that can be conveniently handled in a laboratory. The three material properties of the concrete mix appearing in this formula, namely the Young modulus E, the direct tensile strength f(t) and the size-independent specific fracture energy G(F) must be independently measured. (c) 2005 Elsevier Ltd. All rights reserved.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity