Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6920481
Reference Type
Journal Article
Title
Effect of Aviation Fuel Type on Pyrolytic Reactivity and Deposition Propensity under Supercritical Conditions
Author(s)
Dewitt, MJ; Edwards, Tim; Shafer, L; Brooks, D; Striebich, R; Bagley, SP; Wornat, MJ; ,
Year
2011
Is Peer Reviewed?
Yes
Journal
Industrial and Engineering Chemistry Research
ISSN:
0888-5885
EISSN:
1520-5045
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
Volume
50
Issue
18
Page Numbers
10434-10451
Language
English
DOI
10.1021/ie200257b
Web of Science Id
WOS:000294791000007
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-80052848351&doi=10.1021%2fie200257b&partnerID=40&md5=184f6b118ce96bd5aaed7169fc068bc6
Exit
Abstract
Development of reusable liquid-hydrocarbon-fueled hypersonic vehicles requires improved understanding of the effect of chemical composition on the controlling reaction chemistry and deposition propensity as the fuel is used to cool the system. In this effort, supercritical pyrolytic stressing studies were performed using two petroleum-derived fuels and a Synthetic Paraffinic Kerosene (SPK) comprised predominantly of normal and branched paraffins. All fuels decomposed via free radical pathways with high yields of unsaturates and lower molecular weight products consistent with pyrolysis at high pressures and moderate temperatures. However, the SPK was significantly more reactive than the petroleum-derived fuels due to a lack of efficient hydrogen donors that act to terminate chain reactions (higher net propagation rate). High-pressure liquid chromatography was used to identify and quantify polycyclic aromatic hydrocarbons (PAH) in the stressed fuels, conclusively determining that these are produced during thermal stressing. A notable observation was the presence of PAH during SPK stressing, as the neat fuel did not contain cyclic precursors for growth to PAH. During stressing with stainless-steel tubing, the formation of filamentous deposits via metal-catalyzed reactions of stressed fuel components with reactor surfaces was observed for all fuels studied. However, the SPK fuel exhibited a much higher pyrolytic deposition rate, which was attributed to higher lateral growth rates of surface filaments via noncatalytic free radical addition pathways. The PAR formed during SPK stressing are indicators of the highly reactive intermediates prone to participating in the surface coke addition pathways. Studies blending benzene with the SPK indicated that low PAH solubility in the paraffinic fuel is not the dominant cause for the high deposition propensity. Testing with the petroleum-derived fuels showed that metal sulfide filament formation can occur under endothermic conditions, and higher fuel sulfur content can increase carbon deposition propensity. Studies with surface passivated tubing (Silcosteel) suppressed filamentous carbon formation and rendered a substantial reduction in SPK deposition to levels similar to the petroleum-derived fuels. Overall, these studies provided guidance regarding the controlling chemistry during supercritical pyrolysis of current and potential synthetic hydrocarbon fuels and insight into prevalent deposition pathways.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity