Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6920910
Reference Type
Journal Article
Title
Are anion/pi interactions actually a case of simple charge-dipole interactions?
Author(s)
Wheeler, SE; Houk, KN; ,
Year
2010
Is Peer Reviewed?
1
Journal
Journal of Physical Chemistry A
ISSN:
1089-5639
EISSN:
1520-5215
Language
English
PMID
20433187
DOI
10.1021/jp1010549
Abstract
Substituent effects in Cl(-)...C(6)H(6-n)X(n) complexes, models for anion/pi interactions, have been examined using density functional theory and robust ab initio methods paired with large basis sets. Predicted interaction energies for 83 model Cl(-)...C(6)H(6-n)X(n) complexes span almost 40 kcal mol(-1) and show an excellent correlation (r = 0.99) with computed electrostatic potentials. In contrast to prevailing models of anion/pi interactions, which rely on substituent-induced changes in the aryl pi-system, it is shown that substituent effects in these systems are due mostly to direct interactions between the anion and the substituents. Specifically, interaction energies for Cl(-)...C(6)H(6-n)X(n) complexes are recovered using a model system in which the substituents are isolated from the aromatic ring and pi-resonance effects are impossible. Additionally, accurate potential energy curves for Cl(-) interacting with prototypical anion-binding arenes can be qualitatively reproduced by adding a classical charge-dipole interaction to the Cl(-)...C(6)H(6) interaction potential. In substituted benzenes, binding of anions arises primarily from interactions of the anion with the local dipoles induced by the substituents, not changes in the interaction with the aromatic ring itself. When designing anion-binding motifs, phenyl rings should be viewed as a scaffold upon which appropriate substituents can be placed, because there are no attractive interactions between anions and the aryl pi-system of substituted benzenes.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity