Health & Environmental Research Online (HERO)


Print Feedback Export to File
6941311 
Journal Article 
AUTOMATON: A Program That Combines a Probabilistic Cellular Automata and a Genetic Algorithm for Global Minimum Search of Clusters and Molecules 
Yañez, O; Báez-Grez, R; Inostroza, D; Rabanal-León, WA; Pino-Rios, R; Garza, J; Tiznado, W; , 
2019 
Yes 
Journal of Chemical Theory and Computation
ISSN: 1549-9618
EISSN: 1549-9626 
AMER CHEMICAL SOC 
WASHINGTON 
1463-1475 
English 
A novel program for the search of global minimum structures of atomic clusters and molecules in the gas phase, AUTOMATON, is introduced in this work. This program involves the following: first, the generation of an initial population, using a simplified probabilistic cellular automaton method, which allows easy control of the adequate distribution of atoms in space; second, the fittest individuals are selected to evolve, through genetic operations (mating and mutations), until the best candidate for a global minimum surfaces. In addition, we propose a simple way to build the descendant structures by establishing a ranking of genes to be inherited. Thus, by means of a chemical formula checker procedure, genes are transferred to the offspring, ensuring that they always have the appropriate type and number of atoms. It is worth noting that a fraction of the fittest group is subject to mutation operations. This program also includes algorithms to identify duplicate structures: one based on geometric similarity and another on the similar distribution of atomic charges. The effectiveness of the program was evaluated in a group of 45 molecules, considering organic and organometallic compounds (benzene, cyclopentadienyl anion, and ferrocene), Zintl ion clusters [Sn9- m- nGe mBi n](4- n)- ( n = 1-4 and m = 0-(9- n)), star-shaped clusters (Li7E5+, E = BH, C, Si, Ge) and a variety of boron-based clusters. The global minimum and the lowest-energy isomers reported in the literature were found for all the cases considered in this article. These results successfully prove AUTOMATON's effectiveness on the identification of energetically preferred structures of a wide variety of chemical species.