Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6949400
Reference Type
Journal Article
Title
Accumulation kinetics of propranolol in the rat: comparison of Michaelis-Menten-mediated clearance and clearance changes consistent with the "altered enzyme hypothesis"
Author(s)
Weber, C; Stoeckel, K; Lalka, D
Year
1994
Is Peer Reviewed?
1
Journal
Pharmaceutical Research
ISSN:
0724-8741
EISSN:
1573-904X
Volume
11
Issue
3
Page Numbers
420-425
Language
English
PMID
8008710
DOI
10.1023/a:1018921306200
Abstract
(+)-Propranolol was infused at two rates into the pyloric vein (a portal vein tributary) of 15 male Sprague Dawley rats until apparent steady-state conditions were established (i.e., 8 hr at each rate). One group (n = 7) received the high dose (40 micrograms/min/kg) first, and in the other group (n = 8) the low dose (20 micrograms/kg/min) was used to initiate treatment. Free and total serum concentrations of propranolol were measured. When the low dose was given first, the apparent steady-state concentrations achieved during low- and high-rate infusion steps were 166 +/- 37 and 774 +/- 235 ng/mL, respectively. These data are consistent with a simple Michaelis-Menten kinetic model and the key parameters of such a model (Vmax and Km) were estimated. However, a crucial test of such a model (and one which should give insight regarding the relevance of an "altered enzyme hypothesis") is to reverse the order of infusion steps since, in a system controlled by Michaelis-Menten kinetics, the same steady-state concentrations should be achieved regardless of the order in which infusion steps are given. When the sequence of infusion rates was reversed, steady-state concentrations were 492 +/- 142 and 298 +/- 79 ng/mL for the high and low infusion rates, respectively. Clearly, a history of high-dose exposure reduces the intrinsic clearance of total drug (CLss) during a subsequent low-dose exposure (i.e., the apparent steady-state levels during the low-dose pyloric vein infusions were significantly different; P < 0.001). When these data were corrected for plasma protein binding, the same trends emerged.(ABSTRACT TRUNCATED AT 250 WORDS)
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity