Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6973296
Reference Type
Journal Article
Title
Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia
Author(s)
Burton, J; Chen, C; Xu, Z; Ghadiri, H; ,
Year
2010
Is Peer Reviewed?
Yes
Journal
Journal of Soils and Sediments
ISSN:
1439-0108
EISSN:
1614-7480
Publisher
SPRINGER HEIDELBERG
Location
HEIDELBERG
Page Numbers
1267-1277
DOI
10.1007/s11368-010-0238-y
Web of Science Id
WOS:000285087500007
Abstract
Purpose Soil nitrogen (N) availability is a critical determinant of plantation productivity in subtropical Australia and is influenced by the soil microbial community. The size, structure and function of the soil microbial community can be impacted by land-use change and residue management. The objectives of this study were to examine the impact of land-use change from (1) native forest (NF) to first rotation (1R) hoop pine plantation and (2) 1R hoop pine plantation to second rotation (2R) hoop pine plantation on the soil microbial community. The impact of residue management on the soil microbial community was also investigated in the 2R forest, where soil microbial parameters were measured in tree rows (2R-T) and windrows (2R-W). In addition, relationships between soil microbial parameters and soil N parameters were investigated.Materials and methods Each of the four treatments (NF, 1R, 2R-T and 2R-W) had five 24-m(2) replicate plots from which 15 soil cores were collected and bulked at three depths (0-10, 10-20, 20-30 cm). Microbial biomass carbon (MBC) and N (MBN) and soil respiration were measured on field moist soils. In addition, carbon (C) source utilisation patterns were assessed using the whole soil MicroResp (TM) technique (Campbell et al. 2003).Results and discussion Results indicate that the land-use change from NF to 1R hoop pine plantation significantly reduced MBC, respiration rate, soil total C and total N. Furthermore, the land-use change appeared to have a significant impact on the soil microbial community composition measured using MicroResp (TM) profiles. Land-use change from 1R to 2R hoop pine plantation resulted in a decline in total C and MBN and a shift in microbial community composition. When compared to the 2R-T soils, the 2R-W soils tended to have a greater microbial biomass and respiration rate. Residue management also influenced the microbial community composition measured in the MicroResp (TM) profiles.Conclusions Results indicate that land-use change had a significant impact on the soil microbial community, which was likely to be related to shifts in the quality and quantity of organic inputs associated with the change in land use. This may have significant implications for the long-term productivity of the soil resource. Further studies are required to confirm a difference in microbial community composition associated with residue management. In addition, long-term experiments in subtropical Australia are necessary to verify the results of this snapshot study and to improve our understanding of the impact of single-species plantation forestry and residue management on the soil microbial community, soil N dynamics and ultimately the long-term sustainability of the soil resource.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity