Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6981207
Reference Type
Journal Article
Title
Effect of gap size on litter decomposition and soil nitrate concentrations in a high-elevation spruce-fir forest
Author(s)
Prescott, CE; Hope, GD; Blevins, LL; ,
Year
2003
Is Peer Reviewed?
Yes
Journal
Canadian Journal of Forest Research
ISSN:
0045-5067
EISSN:
1208-6037
Publisher
NATL RESEARCH COUNCIL CANADA
Location
OTTAWA
Page Numbers
2210-2220
DOI
10.1139/X03-152
Web of Science Id
WOS:000186558300017
Abstract
Possible mitigation of nitrate losses associated with clearcuts through harvesting smaller gaps was tested in a high-elevation forest of Engelmann spruce (Picea engelmannii Parry ex Engelm.) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.). We measured concentrations of ammonium and nitrate after 6-week buried bag incubations of forest floor and mineral soil samples in replicated plots of uncut forest and gaps of 10, 1.0, and 0.1 ha and single-tree removal for 7 years after harvest. Nitrate concentrations in forest floor and mineral soil were elevated 3-7 years after harvesting in gaps of 0.1 ha and larger. Removal of the same proportion of trees as single trees did not result in increased nitrate concentrations, suggesting that nitrate losses could be reduced by harvesting single trees rather than creating gaps. Greater N availability was not associated with faster rates of decomposition of litter and forest floor, which were similar in gaps of all sizes (0-10 ha). Reciprocal transplant of forest floor and soil from the 10-ha gaps and the uncut forests indicated that changes in the nature of the forest floor or soil following harvest had a greater influence on nitrate concentrations than the changes in environmental conditions in the gaps.
Tags
IRIS
•
Nitrate/Nitrite
Supplemental LitSearch Update 1600-2015
WoS
New to project
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity