Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6997393
Reference Type
Journal Article
Title
Impact of the virus purification protocol on aggregation and electrokinetics of MS2 phages and corresponding virus-like particles
Author(s)
Dika, C; Gantzer, C; Perrin, A; Duval, JFL; ,
Year
2013
Is Peer Reviewed?
1
Journal
Physical Chemistry Chemical Physics
ISSN:
1463-9076
EISSN:
1463-9084
Publisher
ROYAL SOC CHEMISTRY
Location
CAMBRIDGE
Page Numbers
5691-5700
PMID
23474807
DOI
10.1039/c3cp44128h
Web of Science Id
WOS:000316467800045
Abstract
Previous experimental and theoretical studies have established that electrokinetic and aggregation properties of soft MS2 phages are not only governed by the physico-chemical features of their proteinaceous outer surface but are also significantly impacted by those of their inner RNA component (Dika et al. Appl. Environ. Microbiol., 2011, 14, 4939-4948). These conclusions contradict the recent findings of Nguyen et al. (Soft Matter, 2011, 7, 10449-10456) who reported identical electrokinetic and aggregation characteristics for MS2 and corresponding virus like particles (VLPs) that lack the internal RNA component. We demonstrate here that this contradiction originates from the different purification methods adopted prior to measurements. More generally, we show that stability and electrohydrodynamics of viruses differ according to purification by (i) dialysis, (ii) isopycnic centrifugation in the cesium chloride gradient, and (iii) precipitation using polyethylene glycol (PEG). Methods (i) and (iii) lead to aggregation of MS2 phages at pH <= 4 and pH <= 6 in 1-100 mM NaNO3 solutions, respectively, while under such conditions aggregation is not observed for MS2 and VLP suspensions prepared according to (ii). In addition, VLPs prepared following methods (i) and (iii) aggregate only at the isoelectric point (pH similar to 3-4) in 1 mM NaNO3 solution. Electrophoretic mobility data of stable MS2 and VLP particles were further examined using a recent formalism for electrokinetics of soft multilayered colloids. The analysis qualitatively shows how the purification protocol may affect either the outer particle surface properties and/or the inner particle content. Finally, the non-DLVO aggregation behavior of MS2 and VLPs purified via the above protocols is discussed in terms of the possible change in corresponding interparticular interactions.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity