Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
6997715
Reference Type
Journal Article
Title
Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association
Author(s)
Meng, L; Shao, C; Cui, C; Xu, F; Lei, J; Yang, J; ,
Year
2020
Is Peer Reviewed?
1
Journal
ACS Applied Materials & Interfaces
ISSN:
1944-8244
EISSN:
1944-8252
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
Page Numbers
1628-1639
Language
English
PMID
31800210
DOI
10.1021/acsami.9b19415
Web of Science Id
WOS:000507146100166
Abstract
Many natural materials, such as silk, animal bone, nacre, and plant fibers, achieve outstanding strength and toughness through the rupture of sacrificial bonds between chain segments in the organic phase. In this work, we present a bioinspired strategy to fabricate silk fibroin-based hydrophobic-association (HA) hydrogels by incorporating the hydrophobic interaction as a sacrificial bond into the alginate ionic network, which not only enhanced the mechanical extensibility, strength, and toughness of the hydrogels but also enabled self-recovery and self-healing properties via reversible hydrophobic interactions without external stimuli at room temperature. The hydrophobic interaction system consisted of the hydrophobic monomer stearyl methacrylate (C18M) and an amphiphilic regenerated silk fibroin (RSF) solution. The mechanical tests and rheometry indicated that the hydrophobic interaction served as the sacrificial bond that preferentially ruptures prior to the alginate ionic network under an external load, which dissipated enormous amounts of energy and conferred an improved mechanical performance. Moreover, the structure of HA gels could be quickly recovered after injection due to the existence of hydrophobic interactions. In addition, the degradability of the HA gels in a protease XIV solution was strongly dependent upon the C18M component, which significantly promoted the degradation rate of HA gels. The biomimetic mineralization process of HA gels within a simulated body fluid (SBF), mimicking the inorganic composition of human blood plasma, was performed and the calcium phosphate nanoparticles on the hydrogel were observed. Importantly, in vivo experiments illustrated that the HA gels exhibited satisfactory biocompatibility, and the mouse osteoblasts (MC3T3-E1) could attach and spread on the hydrogels. Overall, the self-healing, biocompatibility, and high mechanical properties of the HA gels render them potentially suitable for load-bearing applications in drug delivery or other soft tissue-engineering applications.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity