Health & Environmental Research Online (HERO)


Print Feedback Export to File
7009074 
Journal Article 
Long-chain free fatty acids inhibit ischaemic preconditioning of the isolated rat heart 
Lochner, A; Genade, S; Genis, A; Marais, E; Salie, R; , 
2020 
Molecular and Cellular Biochemistry
ISSN: 0300-8177
EISSN: 1573-4919 
SPRINGER 
DORDRECHT 
111-132 
We recently reported that non-preconditioned hearts from diet-induced obese rats showed, compared to controls, a significant reduction in infarct size after ischaemia/reperfusion, whilst ischaemic preconditioning was without effect. In view of the high circulating FFA concentration in diet rats, the aims of the present study were to: (i) compare the effect of palmitate on the preconditioning potential of hearts from age-matched controls and diet rats (ii) elucidate the effects of substrate manipulation on ischaemic preconditioning. Substrate manipulation was done with dichloroacetate (DCA), which enhances glucose oxidation and decreases fatty acid oxidation. Isolated hearts from diet rats, age-matched controls or young rats, were perfused in the working mode using the following substrates: glucose (10 mM); palmitate (1.2 mM)/3% albumin) + glucose (10 mM) (HiFA + G); palmitate (1.2 mM/3% albumin) (HiFA); palmitate (0.4 mM/3% albumin) + glucose(10 mM) (LoFA + G); palmitate (0.4 mM/3% albumin) (LoFA). Hearts were preconditioned with 3 x 5 min ischaemia/reperfusion, followed by 35 min coronary ligation and 60 min reperfusion for infarct size determination (tetrazolium method) or 20 min global ischaemia/10 or 30 min reperfusion for Western blotting (ERKp44/42, PKB/Akt). Preconditioning of glucose-perfused hearts from age-matched control (but not diet) rats reduced infarct size, activated ERKp44/42 and PKB/Akt and improved functional recovery during reperfusion (ii) perfusion with HiFA + G abolished preconditioning and activation of ERKp44/42 (iii) DCA pretreatment largely reversed the harmful effects of HiFA. Hearts from non-preconditioned diet rats exhibited smaller infarcts, but could not be preconditioned, regardless of the substrate. Similar results were obtained upon substrate manipulation of hearts from young rats. Abolishment of preconditioning in diet rats may be due to altered myocardial metabolic patterns resulting from changes in circulating FA. The harmful effects of HiFA were attenuated by stimulation of glycolysis and inhibition of FA oxidation.