Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7013832
Reference Type
Journal Article
Title
Impacts of deep-sea mining on microbial ecosystem services
Author(s)
Orcutt, BN; Murdock, S; Pachiadaki, M; Bradley, JA; Brazelton, WJ; Estes, ER; Goordial, JM; Huber, JA; Jones, RM; Mahmoudi, N; Marlow, JJ; ,
Year
2020
Is Peer Reviewed?
1
Journal
Limnology and Oceanography
ISSN:
0024-3590
EISSN:
1939-5590
Publisher
WILEY
Location
HOBOKEN
Volume
65
Issue
7
Page Numbers
1489-1510
DOI
10.1002/lno.11403
Web of Science Id
WOS:000547708600005
Abstract
Interest in extracting mineral resources from the seafloor through deep-sea mining has accelerated in the past decade, driven by consumer demand for various metals like zinc, cobalt, and rare earth elements. While there are ongoing studies evaluating potential environmental impacts of deep-sea mining activities, these focus primarily on impacts to animal biodiversity. The microscopic spectrum of seafloor life and the services that this life provides in the deep sea are rarely considered explicitly. In April 2018, scientists met to define the microbial ecosystem services that should be considered when assessing potential impacts of deep-sea mining, and to provide recommendations for how to evaluate and safeguard these services. Here, we indicate that the potential impacts of mining on microbial ecosystem services in the deep sea vary substantially, from minimal expected impact to loss of services that cannot be remedied by protected area offsets. For example, we (1) describe potential major losses of microbial ecosystem services at active hydrothermal vent habitats impacted by mining, (2) speculate that there could be major ecosystem service degradation at inactive massive sulfide deposits without extensive mitigation efforts, (3) suggest minor impacts to carbon sequestration within manganese nodule fields coupled with potentially important impacts to primary production capacity, and (4) surmise that assessment of impacts to microbial ecosystem services at seamounts with ferromanganese crusts is too poorly understood to be definitive. We conclude by recommending that baseline assessments of microbial diversity, biomass, and, importantly, biogeochemical function need to be considered in environmental impact assessments of deep-sea mining.
Tags
IRIS
•
Cobalt
Cobalt IAP/Protocol
Exclude
Predicted as not relevant in SWIFT Active
LitSearch Update: January 2019 - December 2021
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity