Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7015141
Reference Type
Journal Article
Title
Electrodeposited CuMnS and CoMnS electrodes for high-performance asymmetric supercapacitor devices
Author(s)
Iqbal, MZ; Zakar, S; Haider, SS; Afzal, AM; Iqbal, MJ; Kamran, MA; Numan, A; ,
Year
2020
Is Peer Reviewed?
1
Journal
Ceramics International
ISSN:
0272-8842
EISSN:
1873-3956
Publisher
ELSEVIER SCI LTD
Location
OXFORD
Volume
46
Issue
13
Page Numbers
21343-21350
DOI
10.1016/j.ceramint.2020.05.230
Web of Science Id
WOS:000556283900084
Abstract
The transition metal sulfides have gained extensive interest in energy storage devices owing to their unique features. However, the research-based on cobalt, copper and manganese sulfide composites is limited while they are considered as promising contenders for supercapacitor electrodes. The simplest and facile one-step electrodeposition technique was adopted for the direct growth of CuMnS and CoMnS on a Ni-substrate. The electrochemical properties of CuMnS and CoMnS electrodes were investigated and maximum specific capacitances of 1691 and 2290 F/g, respectively, were obtained at 10 A/g current density. Further, these electrodes are investigated with activated carbon (AC) electrode to fabricate asymmetric supercapacitor devices where CoMnS//AC exhibited superior energy density values than CuMnS//AC device. However, both the devices show a relatively uniform capacitance retention rate (similar to 94%) after 2500 charging-discharging cycles. Furthermore, the role of capacitive- and diffusive-controlled contributions in the charge storage phenomenon of supercapacitor devices are explicitly scrutinized by employing Dunn's model. Co-electrodeposition of transition metal sulfides has great potential as electrode material for highly effective supercapacitor devices.
Keywords
Transition metal sulfides; Electrodeposition; Asymmetric supercapacitors; Capacitive insertion; Diffusive contribution
Tags
IRIS
•
Cobalt
LitSearch Update: January 2019 - December 2021
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity