Health & Environmental Research Online (HERO)


Print Feedback Export to File
7015272 
Journal Article 
The PI3K/Akt inhibitor LY294002 reverses BCRP-mediated drug resistance without affecting BCRP translocation 
Imai, Y; Yoshimori, M; Fukuda, K; Yamagishi, H; Ueda, Y; , 
2012 
Oncology Reports
ISSN: 1021-335X
EISSN: 1791-2431 
SPANDIDOS PUBL LTD 
ATHENS 
27 
1703-1709 
English 
Cellular responses toward cytotoxic drugs are influenced by crosstalk between oncogenic signals and resistance mechanisms. Inhibition of the PI3K/Akt pathway is effective in sensitizing cancer cells of various organs, although the mechanisms largely remain to be elucidated. Breast cancer resistance protein (BCRP)/ABCG2, a drug efflux pump, confers resistance to multiple anticancer agents such as SN-38 and topotecan. Previous studies reported that inhibition of the PI3K/Akt pathway, by gene knockout or PI3K inhibitors, modulated BCRP-mediated drug transport via BCRP translocation in hematopoietic stem cells, renal polarized cells and glioma stem-like cells of mammals. In this study, we assessed the effects of PI3K inhibitors, LY294002 and wortmannin, on BCRP-mediated anticancer drug resistance of human cancer MCF-7 and A431 cells. LY294002, but not wortmannin, reversed the BCRP-mediated SN-38 and topotecan resistance. LY294002 treatment did not affect total or cell surface BCRP levels as determined by western blotting and flow cytometry but blocked BCRP-mediated topotecan efflux in a dose-dependent manner. Immunohistochemical analyses also demonstrated unchanged cellular BCRP distribution. BCRP overexpression in MCF-7 and A431 cells did not confer LY294002 resistance, suggesting that LY294002 is not a transported substrate of BCRP. LY294002 is a derivative of quercetin, a member of flavonoids. Taken together, these results suggest that LY294002 inhibits BCRP-mediated drug transport not by BCRP translocation through the PI3K/Akt signal but putatively as a competitive inhibitor in a major subset of cancer cells. Due to its dual effects, LY294002 could be a lead compound for developing more effective and tolerable reagents for cancer treatment.