Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7017384
Reference Type
Journal Article
Title
IL-17A promotes fatty acid uptake through the IL-17A/IL-17RA/p-STAT3/FABP4 axis to fuel ovarian cancer growth in an adipocyte-rich microenvironment
Author(s)
Yu, C; Yao, Zhi; Deng, W; Niu, X; Du, Y; Chen, Yan; Liu, X; Xu, L; Iwakura, Y; Ma, X; Li, Yan; ,
Year
2020
Is Peer Reviewed?
Yes
Journal
Cancer Immunology, Immunotherapy
ISSN:
0340-7004
EISSN:
1432-0851
Publisher
SPRINGER
Location
NEW YORK
Page Numbers
115-126
PMID
31802182
DOI
10.1007/s00262-019-02445-2
Web of Science Id
WOS:000500630300002
Abstract
Pro-inflammatory cytokines are crucial mediators of cancer development, representing potential targets for cancer therapy. The molecular mechanism of a vital pro-inflammatory cytokine, IL-17A, in cancer progression and its potential use in therapy through influencing fatty acid (FA) metabolism, especially FA uptake of cancer cells, remains unknown. In the present study, we used IL-17A and ovarian cancer (OvCa), a representative of both obesity-related and inflammation-related cancers, to explore the interactions among IL-17A, cancer cells and adipocytes (which can provide FAs). We found that in the presence of palmitic acid (PA), IL-17A could directly increase the cellular uptake of PA, leading to the proliferation of OvCa cells via the IL-17A/IL-17RA/p-STAT3/FABP4 axis rather than via CD36. Moreover, in vivo experiments using an orthotopic implantation model in IL-17A-deficient mice demonstrated that endogenous IL-17A could fuel OvCa growth and metastasis with increased expression of FABP4 and p-STAT3. Furthermore, analysis of clinical specimens supported the above findings. Our data not only provide useful insights into the clinical intervention of the growth and metastasis of the tumors (such as OvCa) that are prone to growth and metastasis in an adipocyte-rich microenvironment (ARM) but also provides new insights into the roles of IL-17A in tumor progression and immunomodulatory therapy of OvCa.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity