Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7025750
Reference Type
Journal Article
Title
Synthesis of liquid fuel via direct hydrogenation of CO2
Author(s)
He, Z; Cui, M; Qian, Q; Zhang, J; Liu, H; Han, B; ,
Year
2019
Journal
Proceedings of the National Academy of Sciences of the United States of America
Language
English
PMID
31182598
DOI
10.1073/pnas.1821231116
Abstract
Synthesis of liquid fuels (C5+ hydrocarbons) via CO2 hydrogenation is very promising. Hydrogenation of CO2 to liquid hydrocarbons usually proceeds through tandem catalysis of reverse water gas shift (RWGS) reaction to produce CO, and subsequent CO hydrogenation to hydrocarbons via Fischer-Tropsch synthesis (FTS). CO2 is a thermodynamically stable and chemically inert molecule, and RWGS reaction is endothermic and needs a higher temperature, whereas FTS reaction is exothermic and is thermodynamically favored at a lower temperature. Therefore, the reported technologies have some obvious drawbacks, such as high temperature, low selectivity, and use of complex catalysts. Herein we discovered that a simple Co6/MnOx nanocatalyst could efficiently catalyze CO2 hydrogenation. The reaction proceeded at 200 °C, which is much lower than those reported so far. The selectivity of liquid hydrocarbon (C5 to C26, mostly n-paraffin) in total product could reach 53.2 C-mol%, which is among the highest reported to date. Interestingly, CO was hardly detectable during the reaction. The in situ Fourier transform infrared characterization and 13CO labeling test confirmed that the reaction was not via CO, accounting for the eminent catalytic results. This report represents significant progress in CO2 chemistry and CO2 transformation.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity