Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7027473
Reference Type
Journal Article
Title
Interfacial microstructure and mechanical properties of In-Bi-Sn lead-free solder
Author(s)
Huang, ML; Zhou, Q; Zhao, N; Chen, LD; ,
Year
2013
Is Peer Reviewed?
Yes
Journal
Journal of Materials Science: Materials in Electronics
ISSN:
0957-4522
EISSN:
1573-482X
Publisher
SPRINGER
Location
DORDRECHT
Page Numbers
2624-2629
DOI
10.1007/s10854-013-1143-0
Web of Science Id
WOS:000321913000065
Abstract
The interfacial microstructure and mechanical properties of a low melting temperature lead-free solder of In-18.75Bi-22.15Sn (in at.%) (In-Bi-Sn) were investigated. The microstructure analysis of bulk In-Bi-Sn revealed that irregular lamellar gamma-Sn phases distributed in the In2Bi matrix. There was only a single endothermic peak with an onset temperature of 62 degrees C on the DSC curve, indicating that In-Bi-Sn is close to a ternary eutectic solder. The ultimate tensile strength of the bulk In-Bi-Sn was 21.76 MP at a strain rate of 10(-2) s(-1) at 25 degrees C. The elongation of the bulk In-Bi-Sn solder reached 87 %, indicating an excellent ductility of the In-Bi-Sn solder. Two intermetallic compounds (IMCs), needle-like Cu(In,Sn)(2) and laminar Cu-6(In,Sn)(5), formed at the In-Bi-Sn/Cu interface. An IMC layer of polyhedral crystallites of InNi formed at the In-Bi-Sn/Ni interface. The shear strength of Cu/In-Bi-Sn/Cu solder joints was 21.15 MP, and the shear fractograph showed that the ductile fracture with dimples appearance occurred in the solder.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity