Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7042750
Reference Type
Journal Article
Title
Macrophage-stimulating protein is produced by tubular cells and activates mesangial cells
Author(s)
Rampino, T; Collesi, C; Gregorini, M; Maggio, M; Soccio, G; Guallini, P; Dal Canton, A; ,
Year
2002
Is Peer Reviewed?
Yes
Journal
Journal of the American Society of Nephrology
ISSN:
1046-6673
EISSN:
1533-3450
Publisher
LIPPINCOTT WILLIAMS & WILKINS
Location
PHILADELPHIA
Language
English
PMID
11856768
Web of Science Id
WOS:000173964000009
Abstract
Until now, hepatocytes have been the only known cell source of macrophage-stimulating protein (MSP), and tissue macrophages have been the cells on which the biologic effects of MSP have been proved. To extend the understanding of the biologic meaning of MSP, it was investigated whether MSP operates in the kidney. MSP protein was evaluated by Western blot in supernatant of cultured human tubular cells (HK2) and human mesangial cells (HMC). MSP mRNA was investigated in HK2 by reverse transcription-polymerase chain reaction (RT-PCR). The expression of the MSP receptor, RON, was evaluated in HMC and HK2 by Western blot. RON mRNA was investigated in HMC by RT-PCR. The expression of MSP and RON in normal human renal tissue was studied by immunohistochemistry. HMC were stimulated with recombinant MSP (rMSP) and HK2 supernatant to study cell growth, migration, and the capacity to invade an artificial collagen matrix and synthesize interleukin-6 (IL-6). HK2 produced MSP and expressed RON in a form that was phosphorylated by rMSP. HMC expressed RON but did not produce MSP. MSP in HK2 supernatant and rMSP induced in HMC phosphorylation of RON, growth, migration, invasion, and IL-6 synthesis. In normal human kidney, tubules expressed MSP and RON. These results indicate a novel field of operation for MSP and suggest a pathogenic role of the MSP/RON system in renal disease. In fact, MSP released by tubular cells may recruit monocytes/macrophages in inflammatory tubulointerstitial disorders. In addition, MSP either circulating or as paracrine product may sustain glomerular mesangioproliferative disease.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity