Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7058108
Reference Type
Journal Article
Title
Disruption of the menin-MLL interaction triggers menin protein degradation via ubiquitin-proteasome pathway
Author(s)
Wu, Y; Zhou, F; Hua, X; Doepner, M; Hojnacki, T; Feng, Z; Katona, BW; He, Xin; Ma, J; Cao, Yan; Busino, L; ,
Year
2019
Is Peer Reviewed?
Yes
Journal
American Journal of Cancer Research
ISSN:
2156-6976
Publisher
E-CENTURY PUBLISHING CORP
Location
MADISON
Page Numbers
1682-1694
PMID
31497350
Web of Science Id
WOS:000483966600012
Abstract
Menin, a protein encoded by the MEN1 gene, suppresses cancers associated with multiple endocrine neoplasia type 1 (MEN1), but promotes the development of a subset of leukemia induced by mixed lineage leukemia (MLL)-derived fusion proteins (MLL-FPs). The crystal structure of menin indicates that it acts as a scaffold protein to bind the N-terminus of MLL via a central pocket. Small molecule menin-MLL inhibitors (MIs) bind the menin pocket to disrupt the menin/MLL interaction, resulting in suppression of MLL-FP-transformed acute myeoloid leukemia (AML). It is thought that Mls suppress the MLL-FP-induced leukemia by blocking the menin/MLL interaction and menin/MLL-induced HOX gene transcription. However, it is not clear whether MIs also affect other aspects of menin biology beyond disruption of the menin/MLL interaction. Here we show for the first time that Mls reduced menin protein levels and decreased the half-life of menin protein but have no effect on mRNA level in MLL-FP-expressing leukemia cells, and proteasome or E1 ligase inhibitor rescued the MI-induced menin degradation. Notably, the MI-induced reduction of H3K4m3 and HOXA9 expression was rescued with a proteasome inhibitor that blocks MI-induced menin protein degradation. Mechanistically, MIs promote the interaction of menin with Hsp70-associated ubiquitin ligase CHIP, resulting in increased menin ubiquitination, leading to increased menin degradation. Together, these findings uncover a novel mechanism whereby small molecule Mls increase menin degradation by triggering the Hsp70/CHIP-mediated ubiquitin-proteasome pathway that ultimately leads to the reduction in HOXA9 gene expression and leukemia suppression.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity