Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7058183
Reference Type
Journal Article
Title
MORPHOLOGICAL EFFECTS OF CORONARY BALLOON ANGIOPLASTY INVIVO ASSESSED BY INTRAVASCULAR ULTRASOUND IMAGING
Author(s)
Honye, J; Mahon, DJ; Jain, A; White, CJ; Ramee, , SR; Wallis, JB; Alzarka, A; Tobis, JM; ,
Year
1992
Is Peer Reviewed?
Yes
Journal
Circulation
ISSN:
0009-7322
EISSN:
1524-4539
Publisher
AMER HEART ASSOC
Location
DALLAS
Page Numbers
1012-1025
PMID
1537099
Web of Science Id
WOS:A1992HG54100017
Abstract
Background. Histological examination of the effects of balloon angioplasty have been described from in vitro experiments and a limited number of pathologic specimens. Intravascular ultrasound imaging permits real time cross-sectional observation of the effect of balloon dilation on the atherosclerotic plaque in vivo.Methods and Results. The morphological effects of coronary angioplasty were visualized at 66 lesions in 47 patients immediately after balloon dilatation with an intravascular ultrasound imaging catheter. Cross-sectional images were obtained at 30 frames per second as the catheter passed along the length of the artery. Quantitative and qualitative assessments of the dilated atherosclerotic plaque were made from the angiograms and the ultrasound images. Six morphological patterns after angioplasty were appreciated by ultrasound imaging. Type A consists of a linear, partial tear of the plaque from the lumen toward the media (seven lesions); Type B is defined by a split in the plaque that extends to the media (12 lesions); Type C demonstrates a dissection behind the plaque that subtends an arc of up to 180-degrees around the circumference (18 lesions); Type D was a more extensive dissection that encompasses an arc of more than 180-degrees (four lesions); and Type E may be present in either concentric (Type E1, 14 lesions) or eccentric (Type E2, 11 lesions) plaque and is defined as an ultrasound study without any evidence of a fracture or a dissection in the plaque. There was a large amount of residual atheroma in each type of morphology (7.8 +/- 2.9 mm2, 61.6 +/- 15.4% of cross-sectional area); there was no difference, however, in lumen or atheroma cross-sectional area among these six patterns. There was a good correlation between ultrasound and angiography for the recognition of a dissection. Calcification was seen in only 14% of lesions on angiography, whereas most lesions (83%) revealed calcification on ultrasound imaging. As determined by intravascular ultrasound, calcified plaque was more likely to fracture in response to balloon dilatation than noncalcified plaque (p < 0.01). Thirteen of 66 lesions (20%) developed clinical and angiographic restenosis. Restenosis was more likely to occur when the original dilatation left a concentric plaque without a fracture or dissection (Type E1, 50% incidence) compared with a mean restenosis rate of 12% in the remaining morphological patterns (p = 0.053).Conclusions. Intravascular ultrasound provides a more complete quantitative and qualitative description of plaque geometry and composition than angiography after balloon angioplasty. In addition, intravascular ultrasound identifies a subset of atherosclerotic plaque that has a higher incidence of restenosis. This information could be used prospectively to consider other therapeutic options in this subset. Intravascular ultrasound provides a method to describe the effects of angioplasty that will be useful in comparing future coronary intervention studies.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity