Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7066945
Reference Type
Journal Article
Title
The peroxisomal matrix protein translocon is a large cavity-forming protein assembly into which PEX5 protein enters to release its cargo
Author(s)
Dias, AF; Rodrigues, TA; Pedrosa, AG; Barros-Barbosa, A; Francisco, T; Azevedo, JE; ,
Year
2017
Is Peer Reviewed?
Yes
Journal
Journal of Biological Chemistry
ISSN:
0021-9258
EISSN:
1083-351X
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Location
BETHESDA
Page Numbers
15287-15300
Language
English
PMID
28765278
DOI
10.1074/jbc.M117.805044
Web of Science Id
WOS:000410809800011
Abstract
A remarkable property of the machinery for import of peroxisomal matrix proteins is that it can accept already folded proteins as substrates. This import involves binding of newly synthesized proteins by cytosolic peroxisomal biogenesis factor 5 (PEX5) followed by insertion of the PEX5-cargo complex into the peroxisomal membrane at the docking/translocation module (DTM). However, how these processes occur remains largely unknown. Here, we used truncated PEX5 molecules to probe the DTM architecture. We found that the DTM can accommodate a larger number of truncated PEX5 molecules comprising amino acid residues 1-197 than full-length PEX5 molecules. A shorter PEX5 version (PEX5(1-125)) still interacted correctly with the DTM; however, this species was largely accessible to exogenously added proteinase K, suggesting that this protease can access the DTM occupied by a small PEX5 protein. Interestingly, the PEX5(1-125)-DTM interaction was inhibited by a polypeptide comprising PEX5 residues 138-639. Apparently, the DTM can recruit soluble PEX5 through interactions with different PEX5 domains, suggesting that the PEX5-DTM interactions are to some degree fuzzy. Finally, we found that the interaction between PEX5 and PEX14, a major DTM component, is stable at pH 11.5. Thus, there is no reason to assume that the hitherto intriguing resistance of DTM-bound PEX5 to alkaline extraction reflects its direct contact with the peroxisomal lipid bilayer. Collectively, these results suggest that the DTM is best described as a large cavity-forming protein assembly into which cytosolic PEX5 can enter to release its cargo.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity