Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7073215
Reference Type
Journal Article
Title
Industrial Recycling of Lithium-Ion Batteries-A Critical Review of Metallurgical Process Routes
Author(s)
Brueckner, L; Frank, J; Elwert, T; ,
Year
2020
Is Peer Reviewed?
1
Journal
Metals
ISSN:
2075-4701
Publisher
MDPI
Location
BASEL
Volume
10
Issue
8
DOI
10.3390/met10081107
Web of Science Id
WOS:000564777000001
Abstract
Research for the recycling of lithium-ion batteries (LIBs) started about 15 years ago. In recent years, several processes have been realized in small-scale industrial plants in Europe, which can be classified into two major process routes. The first one combines pyrometallurgy with subsequent hydrometallurgy, while the second one combines mechanical processing, often after thermal pre-treatment, with metallurgical processing. Both process routes have a series of advantages and disadvantages with respect to legislative and health, safety and environmental requirements, possible recovery rates of the components, process robustness, and economic factors. This review critically discusses the current status of development, focusing on the metallurgical processing of LIB modules and cells. Although the main metallurgical process routes are defined, some issues remain unsolved. Most process routes achieve high yields for the valuable metals cobalt, copper, and nickel. In comparison, lithium is only recovered in few processes and with a lower yield, albeit a high economic value. The recovery of the low value components graphite, manganese, and electrolyte solvents is technically feasible but economically challenging. The handling of organic and halogenic components causes technical difficulties and high costs in all process routes. Therefore, further improvements need to be achieved to close the LIB loop before high amounts of LIB scrap return.
Keywords
lithium-ion battery; recycling; lithium; cobalt; nickel; manganese; graphite; mechanical processing; pyrometallurgy; thermal treatment; pyrolysis; hydrometallurgy
Tags
IRIS
•
Cobalt
Cobalt IAP/Protocol
Exclude
Predicted as not relevant in SWIFT Active
LitSearch Update: January 2019 - December 2021
WoS
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity