Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7101002
Reference Type
Journal Article
Title
Yersinia effector protein (YopO)-mediated phosphorylation of host gelsolin causes calcium-independent activation leading to disruption of actin dynamics
Author(s)
Singaravelu, P; Lee, WL; Wee, S; Ghoshdastider, U; Ding, K; Gunaratne, J; Grimes, JM; Swaminathan, K; Robinson, RC; ,
Year
2017
Is Peer Reviewed?
Yes
Journal
Journal of Biological Chemistry
ISSN:
0021-9258
EISSN:
1083-351X
Publisher
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Location
BETHESDA
Volume
292
Issue
19
Page Numbers
8092-8100
Language
English
PMID
28280241
DOI
10.1074/jbc.M116.757971
Web of Science Id
WOS:000401154100033
URL
https://linkinghub.elsevier.com/retrieve/pii/S0021925820419027
Exit
Abstract
Pathogenic Yersinia bacteria cause a range of human diseases. To modulate and evade host immune systems, these yersiniae inject effector proteins into host macrophages. One such protein, the serine/threonine kinase YopO (YpkA in Yersinia pestis), uses monomeric actin as bait to recruit and phosphorylate host actin polymerization-regulating proteins, including the actin-severing protein gelsolin, to disrupt actin filaments and thus impair phagocytosis. However, the YopO phosphorylation sites on gelsolin and the consequences of YopO-mediated phosphorylation on actin remodeling have yet to be established. Here we determined the effects of YopO-mediated phosphorylation on gelsolin and identified its phosphorylation sites by mass spectrometry. YopO phosphorylated gelsolin in the linker region between gelsolin homology domains G3 and G4, which, in the absence of calcium, are compacted but adopt an open conformation in the presence of calcium, enabling actin binding and severing. Using phosphomimetic and phosphodeletion gelsolin mutants, we found that YopO-mediated phosphorylation partially mimics calcium-dependent activation of gelsolin, potentially contributing to a reduction in filamentous actin and altered actin dynamics in phagocytic cells. In summary, this work represents the first report of the functional outcome of serine/threonine phosphorylation in gelsolin regulation and provides critical insight into how YopO disrupts normal gelsolin function to alter host actin dynamics and thus cripple phagocytosis.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity