Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7110962
Reference Type
Journal Article
Title
The effects of Ag-doping on thermoelectric properties of p-type Pb0.5Sn0.5Te compound
Author(s)
Yu Bo; ,
Year
2012
Is Peer Reviewed?
1
Journal
Wuli Xuebao
ISSN:
1000-3290
Publisher
CHINESE PHYSICAL SOC
Location
BEIJING
DOI
10.7498/aps.61.217104
Web of Science Id
WOS:000316732100055
Abstract
A series of Ag-doped p-type Ag (Pb0.5Sn0.5)(1-x)Te compounds is prepared by melting followed by slow-cooling process, and the phase compositions, microstructures and thermoelectric properties are also systematically investigated. The introduction of Ag in Pb/Sn site effectively increases the hole density which is much lower than the theoretically predicated value in the approximation of complete substitution and single acceptor of Ag, in spite of the fact that all samples show finely single phase for the 5% Ag-doped sample. This implies that part of Ag atoms enter into the interstitial sites acting as electron donor to reduce the hole density. With the increase of Ag content, the electrical conductivity increases gradually and the Seebeck coefficient shows an opposite variation tendency, mainly owing to the variation of hole density. Interestingly, the anomalous "crossover" of Seebeck coefficient at about 450 K indicates the transition of dominating valence valley from light-band to heavy-band while temperature is higher than 450 K. Consequently, due to the optimization of hole density and the domination of heavy band with large effective mass, 1% Ag-doped sample obtains a highest power factor of 2.1 mW.m(-1).K-2 at 750 K, which results in a highest ZT of 1.05 combined with the suppressed lattice thermal conductivity via intensifying point defect phonon scattering. This high ZT is similar to 50% higher than that of Ag-free sample and also higher than commercial p-type PbTe material. Further, the 50% substitution of toxic and heavy Pb by Sn is beneficial for the practical application and environmental sustainability of PbTe-based materials.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity