Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7111241
Reference Type
Journal Article
Title
Data-Driven Predictive Modelling of Mineral Prospectivity Using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China
Author(s)
Sun, O; Li, Hui; Wu, K; Chen, Fei; Zhu, Z; Hu, Z; ,
Year
2020
Is Peer Reviewed?
1
Journal
Minerals
ISSN:
2075-163X
Publisher
MDPI
Location
BASEL
Volume
10
Issue
2
DOI
10.3390/min10020102
Web of Science Id
WOS:000522452900017
Abstract
Predictive modelling of mineral prospectivity, a critical, but challenging procedure for delineation of undiscovered prospective targets in mineral exploration, has been spurred by recent advancements of spatial modelling techniques and machine learning algorithms. In this study, a set of machine learning methods, including random forest (RF), support vector machine (SVM), artificial neural network (ANN), and a deep learning convolutional neural network (CNN), were employed to conduct a data-driven W prospectivity modelling of the southern Jiangxi Province, China. A total of 118 known W occurrences derived from long-term exploration of this brownfield area and eight evidential layers of multi-source geoscience information related to W mineralization constituted the input datasets. This provided a data-rich foundation for training machine learning models. The optimal configuration of model parameters was trained by a grid search procedure and validated by 10-fold cross-validation. The resulting predictive models were comprehensively assessed by a confusion matrix, receiver operating characteristic curve, and success-rate curve. The modelling results indicate that the CNN model achieves the best classification performance with an accuracy of 92.38%, followed by the RF model (87.62%). In contrast, the RF model outperforms the rest of ML models in overall predictive performance and predictive efficiency. This is characterized by the highest value of area under the curve and the steepest slope of success-rate curve. The RF model was chosen as the optimal model for mineral prospectivity in this region as it is the best predictor. The prospective zones delineated by the prospectivity map occupy 9% of the study area and capture 66.95% of the known mineral occurrences. The geological interpretation of the model reveals that previously neglected Mn anomalies are significant indicators. This implies that enrichment of ore-forming material in the host rocks may play an important role in the formation process of wolframite and can represent an innovative exploration criterion for further exploration in this area.
Keywords
mineral prospectivity modelling; machine learning; random forest; convolutional neural network; southern Jiangxi Province; tungsten
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity