Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7117711
Reference Type
Journal Article
Title
Stimulation of 86Rb+ and 32Pi movements in 3T3 cells by prostaglandins and phorbol esters
Author(s)
Moroney, J; Smith, A; Tomei, LD; Wenner, CE; ,
Year
1978
Is Peer Reviewed?
Yes
Journal
Journal of Cellular Physiology
ISSN:
0021-9541
EISSN:
1097-4652
Language
English
PMID
649665
DOI
10.1002/jcp.1040950306
Abstract
The potent tumor promoter tetradecanoyl phorbol acetate (TPA) induces early changes in ion movements analogous to those induced by prostaglandins E1 and F 2alpha. Among the earliest changes induced by TPA is a significant increase in 32Pi incorporation within 15 minutes incubation of TPA (10(-8)-10(-6) M) with post-confluent Swiss 3T3 mouse embryonic fibroblasts. Similarly, the active phorbol ester homolog 4-beta-OH phorbol didecanoate but not the inactive stereoisomeric 4-alpha-OH phorbol didecanoate stimulated 32Pi incorporation. Also, TPA at the above concentrations stimulated 86Rb+ influx shortly after administration. Both fluxes were ouabain-sensitive in accord with the idea that an early effect of TPA is to alter (Na+ + K+)-ATPase activity. Further, prostaglandin E1 (10(-7)-10(-6) M) and prostaglandin F 2alpha (3 X 10(-9)-10(-7) M) caused a similar stimulation of 86Rb+ and 32Pi uptake. The finding that water-soluble prostaglandin F 2alpha also exhibited stimulatory effects indicated that those hormone-induced responses are not mediated by solvent interactions. The similar responses of phorbol esters and prostaglandin derivatives suggests that phorbol esters and prostaglandin derivatives may act at common membrane sites. The finding that stimulatory effects were observed at discrete times in the logarithmic phase of growth suggests that the activation of membrane receptors may be cell-cycle dependent.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity