Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7118527
Reference Type
Journal Article
Title
Free protons do not substitute for sodium ions in buffer-mediated phosphorylation of (Na+ + K+)-ATPase
Author(s)
Schuurmans Stekhoven, FM; Swarts, HG; Helmich-De Jong, ML; de Pont, JJ; Bonting, SL; ,
Year
1986
Is Peer Reviewed?
1
Journal
Biochimica et Biophysica Acta
ISSN:
0006-3002
EISSN:
1878-2434
Language
English
PMID
3002461
DOI
10.1016/0005-2736(86)90060-x
Abstract
In view of our recent finding of imidazole-activation of the phosphorylation of (Na+ + K+)-ATPase and the suggestion by others of an activating role of protons, in lieu of sodium ions, in the overall hydrolytic and phosphorylation processes of the enzyme, we have investigated the effect of pH on the phosphorylation process. No indication of proton activation is found. Rather, phosphorylation at low pH in the absence of Na+ is dependent on the buffer concentration. Imidazole-H+ stimulated phosphorylation at pH 5 reaches the same maximal steady-state level as Na+-stimulated phosphorylation. Low pH also elicits Tris-H+ stimulated phosphorylation, but due to a simultaneous inhibitory effect of this buffer the maximal steady-state level is no more than 50% of the Na+-stimulated phosphorylation level. Protons inhibit rather than activate phosphorylation. Upon decreasing the pH from 7 to 5, we observe for all ligands, whether activating or inhibiting phosphorylation (ATP, Na+, protonated imidazole, Mg2+ and K+), a decrease in affinity (largest for Mg2+) and a decrease in the maximal steady-state phosphorylation capacity. The effects of Na+ and imidazole-H+ on the phosphorylation step have been compared with those on the E2----E1 conformational change, which leads to the phosphorylation step. The different pH-dependence of the affinities for Na+ and protonated buffer in the E2----E1 transition suggests that there are separate activation sites with different pK values for Na+ and the buffer cation. The above findings rule out a role of free protons as a substitution for Na+ in the phosphorylation process.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity