Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7131024
Reference Type
Journal Article
Title
Crystal and Electronic Structures of Complex Bismuth Iodides A(3)Bi(2)I(9) (A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics
Author(s)
Lehner, AJ; Seshadri, Ram; Fabini, DH; Evans, HA; Hebert, CA; Smock, SR; Hu, J; Wang, H; Zwanziger, JW; Chabinyc, ML; ,
Year
2015
Is Peer Reviewed?
Yes
Journal
Chemistry of Materials
ISSN:
0897-4756
EISSN:
1520-5002
Publisher
AMER CHEMICAL SOC
Location
WASHINGTON
Page Numbers
7137-7148
DOI
10.1021/acs.chemmater.5b03147
Web of Science Id
WOS:000363915000027
Abstract
Ternary bismuth halides form an interesting functional materials class in the context of the closely related Pb halide perovsldte photovoltaics, especially given the significantly reduced toxicity of Bi when compared with Pb. The compounds A(3)Bi(2)I(9) (A = K, Rb, Cs) examined here crystallize in two different structure types: the layered defect-perovskite K3Bi2I9 type, and the Cs3Cr2CI9 type. The latter structure type features isolated Bi2I93- anions. Here, the crystal structures of the ternary iodides are redetermined and a corrected structural model for Rb3Bi2I9, as established by single crystal X-ray diffraction and solid state Rb-87 NMR spectroscopy and supported by density functional theory (DFT) calculations is presented. A variety of facile preparation techniques for single crystals, bulk materials, as well as solution-processed thin films are described. The optical properties and electronic structures are investigated experimentally by optical absorption and ultraviolet photoemission spectroscopy and computationally by DFT calculations. Absolute band positions of the valence and conduction bands of these semiconductors, with excellent agreement of experimental and calculated values, are reported, constituting a useful input for the rational interface design of efficient electronic and optoelectronic devices. The different structural connectivity in the two different structure types, somewhat surprisingly, appears to not impact band positions or band gaps in a significant manner. Computed dielectric properties, including the finding of anomalously large Born effective charge tensors on Bi3+, suggest proximal structural instabilities arising from the Be3+ 6s(2) lone pair. These anomalous Born effective charges are promising for defect screening and effective charge carrier transport. The structural, electronic, and optical properties of the complex bismuth iodides are to some extent similar to the related lead iodide perovskites. The deeper valence band positions in the complex bismuth iodides point to the need for different choices of hole transport materials for Bi-iodide based solar cell architectures.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity