Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7133877
Reference Type
Journal Article
Title
HMGB1 Recruits TET2/AID/TDG to Induce DNA Demethylation in STAT3 Promoter in CD4+ T Cells from aGVHD Patients
Author(s)
Xu, X; Chen, Y; Liu, E; Fu, B; Hua, J; Chen, X; Xu, Y; ,
Year
2020
Is Peer Reviewed?
Yes
Journal
Journal of Immunology Research
ISSN:
2314-8861
Publisher
HINDAWI LTD
Location
LONDON
Language
English
PMID
33029541
DOI
10.1155/2020/7165230
Web of Science Id
WOS:000578355400004
Abstract
STAT3 is highly expressed in aGVHD CD4+ T cells and plays a critical role in inducing or worsening aGVHD. In our preceding studies, DNA hypomethylation in STAT3 promoter was shown to cause high expression of STAT3 in aGVHD CD4+ T cells, and the process could be modulated by HMGB1, but the underlying mechanism remains unclear. TET2, AID, and TDG are indispensable in DNA demethylation; meanwhile, TET2 and AID also serve extremely important roles in immune response. So, we speculated these enzymes involved in the STAT3 promoter hypomethylation induced by HMGB1 in aGVHD CD4+ T cells. In this study, we found that the binding levels of TET2/AID/TDG to STAT3 promoter were remarkably increased in CD4+T cells from aGVHD patients and were significantly negatively correlated with the STAT3 promoter methylation level. Simultaneously, we revealed that HMGB1 could recruit TET2, AID, and TDG to form a complex in the STAT3 promoter region. Interference with the expression of TET2/AID/TDG inhibited the overexpression of STAT3 caused by HMGB1 downregulation of the STAT3 promoter DNA methylation. These data demonstrated a new molecular mechanism of how HMGB1 promoted the expression of STAT3 in CD4+ T cells from aGVHD patients.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity