Health & Environmental Research Online (HERO)


Print Feedback Export to File
7162419 
Journal Article 
Fe2+ -catalyzed oxidative cleavages of Ca2+ -ATPase reveal novel features of its pumping mechanism 
Montigny, C; Jaxel, C; Shainskaya, A; Vinh, J; Labas, V; Møller, JV; Karlish, SJ; le Maire, M; , 
2004 
Yes 
Journal of Biological Chemistry
ISSN: 0021-9258
EISSN: 1083-351X 
English 
We have analyzed the Fe2+ -catalyzed oxidative cleavages of Ca2+ -ATPase in the presence of Ca2+, with or without the ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMP-PNP) or in the presence of the inhibitor thapsigargin. To identify the positions of cleavages as precisely as possible, we have used previously identified proteinase K and tryptic fragments as a standard, advanced mass spectrometry techniques, as well as specific antibodies. A number of cleavages are similar to those described for Na+,K+ -ATPase or other P-type pumps and are expected on the basis of the putative Mg2+ binding residues near the phosphorylated Asp351 in E1 or E2P conformations. However, intriguing new features have also been observed. These include a Fe2+ site near M3, which cannot be due to the presence of histidine residues as it was postulated in the case of Na+,K+ -ATPase and H+,K+ -ATPase. This site could represent a Ca2+ binding zone between M1 and M3, preceding Ca2+ occlusion within M4, 5, 6, and 8. In addition, we present evidence that, in the non-crystalline state, the N- and P-domain may approach each other, at least temporarily, in the presence of Ca2+ (E1Ca2 conformation), whereas the presence of Mg.ATP stabilizes the N to P interaction (E1.Mg.ATP conformation).