Jump to main content
US EPA
United States Environmental Protection Agency
Search
Search
Main menu
Environmental Topics
Laws & Regulations
About EPA
Health & Environmental Research Online (HERO)
Contact Us
Print
Feedback
Export to File
Search:
This record has one attached file:
Add More Files
Attach File(s):
Display Name for File*:
Save
Citation
Tags
HERO ID
7164597
Reference Type
Journal Article
Title
Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds
Author(s)
St-Pierre, JP; Gauthier, M; Lefebvre, LP; Tabrizian, M; ,
Year
2005
Is Peer Reviewed?
Yes
Journal
Biomaterials
ISSN:
0142-9612
EISSN:
1878-5905
Language
English
PMID
16000220
DOI
10.1016/j.biomaterials.2005.05.046
Abstract
The present work assesses the potential of three-dimensional porous titanium scaffolds produced by a novel powder metallurgy process for applications in bone engineering through in vitro experimentation. Mouse MC3T3-E1 pre-osteoblasts were used to investigate the proliferation (DNA content), differentiation (alkaline phosphatase activity and osteocalcin release) and mineralisation (calcium content) processes of cells on titanium scaffolds with average pore sizes ranging from 336 to 557 microm, using mirror-polished titanium as reference material. Scanning electron microscopy was employed to qualitatively corroborate the results. Cells proliferate on all materials before reaching a plateau at day 9, with proliferation rates being significantly higher on foams (ranging from 123 to 163 percent per day) than on the reference material (80% per day). Alkaline phosphatase activity is also significantly elevated on porous scaffolds following the proliferation stage. However, cells on polished titanium exhibit greater osteocalcin release toward the end of the differentiation process, resulting in earlier mineralisation of the extracellular matrix. Nevertheless, the calcium content is similar on all materials at the end of the experimental period. Average pore size of the porous structures does not have a major effect on cells as determined by the various analyses, affecting only the proliferation stage. Thus, the microstructured titanium scaffolds direct the behaviour of pre-osteoblasts toward a mature state capable of mineralising the extracellular matrix.
Home
Learn about HERO
Using HERO
Search HERO
Projects in HERO
Risk Assessment
Transparency & Integrity